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Solitons in nonlinear fiber couplers with two orthogonal polarizations
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We consider a model of two coupled nonlinear optical fibers with two polarizations in each fiber. This study
only considers the two cases when the polarization of the light in each fiber is either linear or circular. We use
the variational method to find families of stationary solitary waggsditong of this model. In particular, we
demonstrate that the variational method can be used in a universal fashion to find certain types of bifurcations
of the stationary solutions. All the families of solitons that we find can be classified in three grdips:
core-symmetric solitons that have equal energies in each @oresore-asymmetric solitons that for large
values of the energy have most of the energy concentrated in one cor@ii aodre-asymmetric solitons for
which the ratio of the energies in the two cores remains finite when the total energy of the soliton becomes very
large. The first two groups of solitons have direct analogs with solitons of the nonlinear fiber coupler that has
only one polarization in each core. We also briefly discuss the stability properties of the various solitons found.
[S1063-651%97)07805-1

PACS numbgs): 03.40.Kf, 42.65.Tg, 42.81.Gs

[. INTRODUCTION the parallel polarization component in the other core, while
inside the same core, the orthogonal polarization components

Solitons and other nonlinear states in coupled optical fi-are coupled nonlinearly. We will consider the cases when
bers[nonlinear directional couplef®LDCs)] have been ex- B=1% and8=2, which correspond, respectively, to propaga-
tensively studied theoretically over the past several yeardjon of linearly and circularly polarized light inside each core
see, e.g., Ref§1-9]. Besides being of interest in their own (cf. [12]). Any values of3 between3 and 2 will correspond
right, such solitons may find applications in future commu-to elliptically polarized eigenmode&f. [11,17)); however,
nication systems as information carriers in all-optical switch-we will restrict ourselves to considering only these two
ing deviceq 9]. Past works have only considered models incases. Let us note that the cgée 2 pertains not only to two
which each core of the NLDC was monomode. In realitycircularly polarized modes but also to two parallel, linearly
however, it is necessary to take into account the polarizatiopolarized modes with distinct carrier wavelengths. The linear
of light. If one allows two polarizations in the coupled cores, coupling constanic can always be scale@14]) to an arbi-
this will render the system’s dynamics richer than it wouldtrary (nonzerg value. Thus, in what follows, we will set
be in the case of monomode cores, and will open the way to

predict new types of solitons, as well as their bifurcations. k=1.
This is the general objective of the present work.
We consider a model based on the equations We will refer to Egs.(1.1) as the “dual core, dual polariza-
) L 5 ) 3 tion” (DCDP) model.
iUg,+3Uy +ug(Jug|+ Bluyg|?) + ku,=0, One of the main assumptions made in the derivation of
the DCDP equations is that there is a large phase birefrin-
iv1,% 301+ 01(|vg]?+ Blug®) + kv,=0, gence in each core, so that the birefringence beat length be-
tween the orthogonal polarizations is much shorter than the
iU+ Uz, Up(|Up|*+ Bluo|?) + kU =0, nonlinear, dispersion, and coupling lengths, with the latter

three lengths being of the same order of magnitude. Given
ivy,+ %v2,77+v2(|vz|2+,8|u2|2)+Kv1=0, (1.1)  the large birefringence of the cores, one can then discard
certain rapidly oscillating termgcf. [11,12)) and, after a
which describes pulse propagation in two adjacent fibesimple phase transformation, obtain Eq$.1). The other
cores, with two orthogonal polarizations existing in eachtwo assumptions made in the derivation of Efl) are that
core. In Egs(1.1) we have used the standard nondimension<i) the propagation constants of the parallel polarizations are
alized variablesi; , andv , for the envelopes of the electric equal,(ii) as are the linear coupling constants for the vertical
field in the pulse, and and  for the distance along the fiber and horizontal polarizations.
and for the retarded time, respectivebf., e.g.,[10,11,6). As mentioned above, the DCDP generalizes the cel-
Each polarization component in a core is coupled linearly taebrated equations of the NLDC that have only one polariza-
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tion in each cordfor a review see, e.g[7], and references found in[15], there are two other types of solitons of the
therein. (The latter model will be referred to simply as DCDP. Solitons of one of these types, although being un-
NLDC throughout the text.On the other hand, in the limit stable, have a much slower instability growth rate than that
when the linear coupling constant between the parallel polarOf all the other unstable solitons. The stability of the second
izations vanishes and one obtains two uncoupled cores, tHgpe of solitons has not and could not be established within
DCDP reduces to another well-studied case, that of two orthe framework of first-order calculations. Thus even if the
thogonally polarized pulses propagating in the same cbre. latter type of solitons may be found to be unstable in future
such a case, the pulses in the orthogonal polarizations aiséud|es, its instability gfowth ratg will still be quite Iovy, thus
said to form avector soliton) Thus it is natural to develop 't May be useful as an intermediate state, and even important
our analysis, as well as to present the results, for the DCDF! the evolution of an arbitrary initial pulse.

proceeding from the results already known for the two afore-

mentioned basic models. The most important piece of infor- Il. REVIEW OF THE TWO BASIC MODELS

mation pertaining to these models is the form of their sta-
tlona_ry, so!ltonhk“e SQIUUOPS’. for br_eVIty,_ we will call such scribed(see, e.9.[7,6]) by two linearly coupled nonlinear
solutions simply “solitons” without implying that Eqg1.1) Schralinger (NLS) type equations

are integrable by the inverse scattering transform. The reason
why we restrict our attention only to solitons is that even
though there are other types of stationary solutions, whose
intensity profile has more than one maximum, they have al-
ways been found to be structurally unstakeee, e.g.,

4,13,14), and thus they do not seem to be important in the, . . .
c[avoluti(;]rz of an arbitrar))// initial pulse P in which we have set the linear coupling constant between

In this paper, we study the problem of the existence 01Ihe cores_equal to unity. Soliton solutions of E(¢&.1) can
soliton solutions of the DCDP. To this end, we employ thebe found in the form
variational method(see Sec. Il beloy which yields six
nonlinear algebraic equations for the amplitudes and widths
of the soliton’s components. Those equations can be soIve<\jNh rep=const andu re real valued
in general, only numerically; however, certain important in- Eep;co ‘Z 16‘ n(7) are rea ta'Eli/\?tr.] B 1
formation about the solutions can be obtained either analyti- qua.|ons( ) ). POSSESS Symmetrim ul(.T)_UZ(T.)
cally or by numerically solving only twdinstead of six ~ 2nd antisymmetrigwith u,(7)=—us()] solutions, which
equations. We will also briefly report on the main results€X1St forp=1 andp=—1, respectively:

about the stability of the solitons found, with a more detailed (s) s)
exposition of the stability analysis being given elsewhere uy”(n)=uy"(r)=v2(p—1)secliy2(p—1)r],

We start with a review of the NLDC model. It is de-

; 1 2 _
iug,+3Up .+ Ugfug|*+u,=0,

2.1
: 1 2 _
iUp,+ 3Up .+ Up|Uy|*+ Uy =0,

un(z,7) =€, (7), n=1,2, (2.2

([15)).
The rest of the paper is organized as follows. In Sec. lwe U™ (7)=—u"(7)=2(p+1)sechi\2(p+1)r].
review the results for the soliton solutions of the two basic 2.3
models: the NLDC and the single core with two orthogonal
polarizations. In Sec. Ill, we formulate the variational In [3], it was shown that in addition to these two types of

method for the DCDR1.1), derive six algebraic equations Solutions, forp=3%, there exists an asymmetric solution with

for the amplitudes and widths of the soliton’s four compo-Ui(7)Ux(7)>0 andu,(7)#u,(7). An exact analytical form
nents(u; , andv; ,), and then present some simple solutionsof the asymmetric solution is not known; however, an ap-
to those equations in special cases. In Sec. IV we find th@roximate expression can be found with the variational
boundaries of the regions of existence of various types omethod(see Sec. I)l. It should be noted that the asymmetry
solitons of the DCDP. Some of those boundaries can be ddetween the components of the asymmetric solution is absent
termined quite simply analytically, while the others can beat the point of thepitchfork bifurcation p=3. Asymptoti-
determined by solving numerically two nonlinear algebraiccally, asp—=, u;(7)/u,(7)=0(p).

equations, obtained from the full set of six equations. Among In [4], a numerical study of stability of these three types
the latter group of the boundaries, there are bifurcatiorpf stationary solutions was undertaken, and its results can be
curves that correspond topitchfork bifurcationthat occurs ~ summarized as follows.

to a core-symmetric solitofisee the definition after Eqs. (i) The antisymmetric solution is unstable with respect to
(3.13] thereby giving rise to a core-asymmetric one. Let ussmall perturbations of its shape fpe — 0.6, [this value was
note that although the method we used to find these bifurcaead off of Fig. 1a) in [4]] i.e., in almost the entire region of
tion curves is quite simple, we are not aware of any earliefts existence.

works where such a method has been used for the same (ii) The symmetric solution is stable far<3, i.e., up to
purpose. In Sec. V, we present and discuss the results of tilse bifurcation point, where it loses stability and remains
numerical solution of the full set of equations, E(®.3). In  unstable for all larger values @f.

Sec. VI, we summarize the results of this work and also (i) The asymmetric solution is unstable in a tiny region
briefly describe the stability of the various types of solitons3<p=<1.85, and is stable fqp=1.85. The existence of that
in the limit of large energy. In general, in that limit, only small region of instability indicates that the bifurcationpat
solitons that are four-component analogs of the asymmetrie=3 is subcritical. That is, foB<p<1.85, the slop&E/dp
soliton of the NLDC are stable. However, as it has been<0, where the soliton’s enerdy is defined by
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® — ipzo—a2rl2
E=J' dr(Juq|?+|uy/?). up Az, 1) =A £'P% : .
01,2(21 7_) — Bl,2eiqze_ b27'2/2_
The subcritical nature of the bifurcation was first discovered
numerically in[4], and recently it was show8] that the It is known that a Gaussian profile is able to approximate the
variational method can also grasp this feature. In the presemixact hyperbolic secant soliton of a single NLS equation
work, however, we will restrict our attention to only finding [18], and also solitons of linearly coupled NLS-type equa-
the location of the corresponding bifurcation points for Egs.tions [19], quite well. Moreover, as has already been men-
(1.1, without resolving the question of whether those bifur-tioned, the variational method yields rather accurate results,
cations are subcritical or not. even in the vicinity of the bifurcation that occurs to the sym-

The second basic model is a single core with two orthogometric soliton in the NLDC moddl8]. Thus, we expect that

nal, nonlinearly coupled polarizations. It is described by thdt will also be able to sufficiently closely approximate the

following equations: solitons of the DCDP and their bifurcations.
Let us note that the widths of the soliton’s components,
iU + U ,+u(lul®+glv]?) =0, which are linearly coupled to each other, are taken to be
) N ) o 2.4 equal, the reason being that earlier numerical re$8|519
v+ 50, u(fv[*+Blul*) =0, for linearly coupled NLS-type equations suggested that the

widths of the linearly coupled components do not signifi-
cantly differ. On the other hand, the widths of the orthogonal
components, which are only coupled nonlinearly, must be
allowed to be different; otherwise, for example, one would
not be able to satisfactorily match the exact regilf) with
its variational approximatioficf. Eq. (4.3) below].

Now, one inserts ansat3.1) into the Lagrangian density

which were first derived ifill]. The values of the nonlinear
cross-coupling coefficient3=3% and 8=2, correspond, re-
spectively, to linearly and circularly polarized eigenmodes in
the fiber. We will refer to Eq92.4) as to the “vector NLS”
(VNLS) equations.

Stationary solutions of Eq$2.4) can be found in the form

u(z,n)=u(ne®? uv(z,7)=v(7)e% (2.5

with u(7) andv(7) being real. We will refer to the solution
(2.5) as to a “vector soliton.” In[16,17), it was shown that

i
L= 3 n; , [(Urup,—C.C)+(vrv,,—C.C)]

the vector solitons that have bathandv components non- 1 2 2y, 1 4 4
o . + —= + +z +
zero exist in a domain of thep(q) plane located between the nzi,J 2(|u”'7| a5+ 2 (unl*+ fonl)
straight lines: P
(VTTEE-1|%2 + 5 [unf2lonf? |+ (U Up+ U5 U + (05 02+ vE 1)
o=\ | P (2.6

of Egs.(1.1) and then integrates the result oveto obtain
Outside the above domain, as well as at the boundaries, thetlee averaged Lagrangian
are only solutions with either a 0° or a 90° angle of polar-

ization: 1 1 1
ization: —(L)=— >, |=(A%a+B2b)+| A2 B+Bﬁ 9)
i \/; n=1,2 8 2 a b
g=0c: Ug(7)=+V2psech/2p7, v(7)=0,
_ 1 1\ B AZB?
=q.: = =/ h/ 4= g4, P2 _Thn"n
g=d.: Uu(m)=0, vgo7)=+v2qgsech/2qr. (2.7 P2 bW A, a+Bn b)+ > m

When p=q, a solution of the VNLS is a composite vector 1 1
soliton with a 45° angle of polarization: + 2 AA,+ = B1B,. (3.2

b
p=q: |u(7)|=|v(7)|=2p/(1+B)sech/2pr

(2.9 Since we are looking for stationary solutions, we set

(the relative sign ofu and v is unimportant For q.,<q
<qq, andp#q, an analytical form for the vector soliton, to

be denoted asug,vg), is not known; howeveruy(r) and . .
vo(7) can be found numerically; see, e.fl7]. Lastly, all  Then the Euler-Lagrange equations, derived from Bc),
the vector solitons of the VNLS were found to be stable, ang/i€ld the following system of nonlinear algebraic equations

9 A== L bz)=0
gz M(@==45,b(2)=0.

they were shown to have no bifurcatiofts3]. for the amplitudes and the widths:
2 2 2
IIl. VARIATIONAL METHOD & ro- ﬁ_ﬁ _Ba _ &:0, (3.33
AND ITS SIMPLEST SOLUTIONS 4 v2 U Ja?+bh? A4
To find the stationary soliton solutions of Eq4.1), we 22 A2 B2a A
employ the variational method. To this end, we take a Gauss- Syp-2op—2_-tog (3.3b
ian ansatz for the functions, , andv ,: 4 v2 JaZ+b? Az
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b2 Bz A2b B Next, the subcas€3.5b corresponds to the asymmetric
q— — 2 5 -2 =0, (3.30 soliton of the NLDC. Although, as was mentioned in Sec. Il,
4 V +b Bl an exact analytical form of this solution is not known, one
can still solve Eqgs(3.4) and thus find its approximate form.
b2 B3 AZb B, To this end, we denote
q— - =0, (3.30
4 Py B Z=A2+ A2 3.7)
(a2_ p AeAD 1 A A+ B A2B2+ AZB2 . and then add Eq€3.43 and(3.4b to obtain
A AW, 2 Zanz a2
a2 Va*+b S =2v1-2p, 3.9
+A1A,=0, (3.39

where we have used the relati@5b). Substituting now Eq.
while we find it convenient for future use, to write the next (3.49 into Eq. (3.8) and using Eq(3.5b again, we find a

equation in the form quadratic equation fo:
8 2/\B, Bi/ 4v2 B Bl In order that Eqs(3.7) and (3.5b have a real solution for

A; andA,, one must hav&=2v2. This requirement selects
one root of Eq(3.9), and then we find

2V2
(3.3f) A1:§|(_(p+ \/p - +3)

In the above system of equations, the propagation constants
p andq play the role of control parameters. 3
There are two special cases for which analytical solutions
of Egs. (3.3 are known. The first such case corresponds to 1([2v2
A=51|3~ (p+Vp?~3+3)
v2
3

b3 B B
b ( 2 24 A2 % v 1=0.
2

T (Va2 b?)? By

ZBl

the reduction of the DCDP to the NLDC basic model. In this
case, set, sayB,;=B,=0, and then Eqs3.33, (3.3b, and

(3.39 yield 2
Y - pHVp*=3-3)| |,
a2+ Al A2 g (3.4
47 va A ' a= —<2vp ———p)) (3.10
a’ A§ A (we assumedh;> A, for definiteness Note that this(real
Z+ v A—2=0, (34D solution exists forp=1. This threshold valuefy)q= 7 is

only 5% larger than the exact bifurcation valupg)exact
=2, at which point the asymmetric soliton of Eq&.1)

a2 p 1 . .
2., A2 4., a4 _ comes into existencesee Sec. )
— = +A5)+ — (AT+A)+ =0. . . .
( 8 2 ( A2) (A1t A2) + ArAr =0 The other special case of an analytic solution of system
(3.40 (3.3) is when one takes
By substracting Eq(3.43 from Eq. (3.4b), one obtains that |A1l=[B1|=[Az|=|B|=A, a=b,
either
SgA1A) =, sgrB.By)=v,
AT=A3 (358  whereu andv can take on the values 1 independently of
each other, and at the same time one relates the control pa-
or rameters by
AA,=V2. (3.5b P—p=q—v.

Thus we have two subcases. Proceeding with the subcaé'% this case, Eqs(3.3) readily yield the solution

(_3.56), whi_ch ob_viously corresponds to the symm_etric or an- , 42 (p—p) )

tisymmetric solitons(2.3) of the NLDC, one obtains from =3 175" as=z(p—u), (3.11
Egs.(3.43 and(3.49 B

12 which is the variational analogue of the composite vector
2 o soliton (2.9).

3 (P=w)| » w==xl Although, as was mentioned in Sec. Il, a general analyti-
(3.6 cal solution to the VNLS2.4) is not known, it will turn out

a?=5(p—u), A1:MA2:(
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very useful in the future analysis to consider also the reduc- We divided the interval Xin ,»Xmax iNto smaller subinter-
tion of the DCDP to the VNLS model. To this end, one vals and thus obtained a six-dimensional grid in the space of
should take the unknown#\, ,, B, ,, a, andb. At each node of the grid,
we calculated the sum of the squares of the left-hand sides of

A;=puh=A, B;=vB,=B, u,v=*1 (312 Egs.(3.3. If that sum was less than a certain number, de-
noted here aB, then we took the corresponding node of the
grid as an initial guess in the Newton-Raphson method and
then searched for &ea) root near that node. In fact, the

and then Eqs(3.3) will reduce to

a2 A2 BZ%a . .
+(p—p)— o, (3.133 structure of the basins of attraction of the roots of a system of
K ,/ a2+ p2 ’ nonlinear algebraic equations can be quite complicked,
e.g.,[20]], and, in particular, even fractal. So, even a close
bz Bz AZb proximity of an initial guess to one of the roots does not
—p)— =0, 3.13 always guarantee convergence to that root. However, we
+(q-v) — (3.139
v +b chose the thresholB to be not too smal{usually, we took
D =6) and thus obtained many nodes as initial guesses. This
a2 A2 B2a3 gave us confidence that we have probably not missed any of
—(p—wp)+ \/m)g =0, (3.130 the actual roots.

From the above exposition of our numerical procedure, it
5 5 - is clear that implementing it did require a considerable
b__ o+ B_ Ab ~0. (3.139 amount of computer time. Therefore, any technique for ob-
(a-v) (v (JaZ+b2)3 h2)3 ' taining information about the solutions of E@8.3) by solv-
ing fewer than six algebraic equations should be regarded as
Equations(3.13 coincide with the equations that the varia- & very significant simplification. In Sec. IV, we will describe
tional method would yield for the VNLS model in whigh  in detail two such techniques and also present the results that
and q would be replaced byp(—u) and (@—v), respec- Were obtained by utilizing them.
tively. These equations, like the exact VNLS mod2!4),
cannot be solved analytically unlegs— uw=q—», which IV. BOUNDARIES OF REGIONS OF EXISTENCE
yields the special case of the vector soliton with a 45° angle OF SOLUTIONS OF EQS. (3.3
of polarization; cf. Eqs(3.13. However, the form of the
general vector solitonup,v,) of the VNLS has been estab-

lished numerically, and so we will consider its variational follows: In what regiofs) of the (p.q) plane do the solu-

approximation, given by Eqg3.13, to be known. Conse- o . . .
quently, we then know the form of the class of solitons of thet|ons exist? We will only consider solutions that have all four

DCDP that satisfies the reductigd.12. We will call such amplitudes,A, , and By, nONZero, Since In the case Whef”‘
solitons “core symmetric,” and the solitons that do not sat- > B, = BZ:.O’ the SOIU“‘.)”S were fou_,md analyt|c_ally In
isfy this reduction, “core asymmetric.” These names areSec II. It will be convenient to consider three different
chosen to emphasize a particular kind of symmetry with reCases, distinguished by the relative signs of the amplitudes:
spect to interchanging the cores that the corresponding sog"se (i) A1A,>0 and B,B,>0; case(ii) A;A,>0 and
tons have or do not have. Namely, for the core-symmetric1B2<0; and casdiii) A;A;<0 andB,B,<0. Note that
solitons, magnitudes of the parallel components in the tw&he signs ofA, , relative to those 0B, , are unimportant.

cores are the same. Note that the core-symmetric solitons of Let us first find the boundaries of the regions of existence
the DCDP are the analogues of both the symmetric and a )f the core-symmetric solitons that satisfy the reduction
tisymmetric solitons of the NLDC, whereas the core- 3.12. In that case, the exact equations for the boundaries

asymmetric solitons are the analogs of the asymmetric soli* can be found in the same way as it was done for the VNLS
tons of the NLDC. (2.4) [16,17). The result is a simple generalization of Eq.

Thus it is the core-asymmetric solitons of E¢3.3) that (2.6):

Equations(3.3) have two control parameterg, and g.
Therefore, the first question that needs to be answered is as

will be the remaining subject of our studies. Such solutions, M ian_1\*2
in general, cannot be found analytically, but they can be (q—v)o= M) (p—p), (4.2
found numerically by the Newton-Raphson method. From 2

the above, it is also clear that Eq8.3), in general, may
have more than one solution for any giverandqg. So, in
order to find all the solutions, at least in some specified re-
gion of A;,, By, a, andb, we will use the following

procedure. First, we will start to search for solutions where W how that th iational method id
any of these six variables lies between the values of 0.1 € now show hat the variational metnod provides a very

ood approximation to Eq4.1. In Egs.(3.13), setB=0
(=X @and V7[max@,q)+1] (=Xnad. These values have 9
been rather arbitrarily chosen, but as it will be clear from(bUt g;ﬁ 0), and th(:nz a]r:da aée;]évfgbbﬁffga ?1((3:2%;
what follows, our numerical procedure still allows one to ing (b/a)=r, one finds from Eq an

whereu and v were defined in Eq(3.12. These boundaries
are plotted in Figs. 1 and 2. Note that along the rgysv

=(q—v); and q—v=(q—»)J,, one hasA=0 andB=0,
respectively.

find solutions, if they existed, with values #f ,, B, ,, a, 4‘[&
andb outside the interval Xin . Xmay, a@lthough such solu- (q—v)d= ( 2l (p—p), (4.23
tions were actually never found. 3\ V1i+r?
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FIG. 1. Regions of existence of solutions of E¢3.3) with 8
=Zin the (p,q) plane.(a) and (b) correspond to the caséa;A,
>0, B;B,>0) and (A;A,>0, B;B,<0), respectively; a figure for
the case(A;A,<0, B;B,<0) is not shown. Note that irib), A;
=A, and B;=—B, along the bisectop=q only for the core-
symmetric soliton.

wherer satisfies

ro v2g 4.2b
2- (T |
Solving Egs.(4.2) numerically for3=% and8=2, one finds
+ +
-V -V
O Vet _ 5 426 versus (A= V)er =2.438
p_M var exact
for =2 (4.339
and
_ V)+ _ V)+
{u =0.573 versus u =0.575
p M var exact

for B=%.  (4.3b

FIG. 2. Same as in Fig. 1, byg=2. Note that in(c), A=
—A, and B;=—B, along the bisectop=q only for the core-
symmetric and AS2 solitons.

actly, because even the exact form of the asymmetric soli-
tons of the simpler NLDC model, Ed2.1), is not known.
Therefore, we will use the variational approximati110

for the asymmetric solitons of the NLDC to find the approxi-
mate boundaries of the regions of existence of the core-
asymmetric solitons of the DCDP. Near such a boundary,

Equations for the boundaries of regions of existence obne has thaB; ,<A; , andA, , are given, to the first order,
core-asymmetric solitons of the DCDP cannot be found exby Eq.(3.10 (the case whe#, ,<B, , can be treated analo-
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gously. Note thatA; andA, are of the same sign, while the Eq. (3.39. Upon neglecting terms of ordeig? and higher,
infinitesimal amplituded; and B, could have opposite, as this compatibility condition gives onénear equation for the
well as the same signs. Now, in E¢8.39 and(3.3d, one  five unknownséa, db, 8A,,, and B? [since B3=B?R?
can neglect the terms proportional Bf and B% but one  +0(48g?)]. The other four equations for these unknowns
should keep the term®,/B; and B;/B,, respectively. follow from Egs.(3.39, (3.3b), (3.39, and(3.3f). By solving
Then, requiring that these equations be consistent with eache resulting linear system, one finds tHaf=K(p)&q,
other, i.e., that the ratioR,/B,), found from Eq.(3.30, be  whereK(p) is some coefficient. Then the requirement that
the inverse of the ratio, /B,), found from Eq.(3.3d, one  B2>0 selects on which side of the boundary the solution
obtains the equation exists. For example, iK(p)>0, then the real solution exists
for >0, and vice versa. The results that we found in this

b_2+ B BbA? b_2+ B BbA; | way are presented in Figs. 1 andtBe shaded areas denote
2 4 [a2+p2/ \ 4 q 2+p2| the regions where the solutions exjsind these results are

confirmed by the numerical solutions of E@8.3).
which, upon using Eg<3.5b and(3.7), can be rewritten as After we have determined the outer boundaries of the re-
gions of existence of solutions, we determine biifeircation

b2 2 [p? BbZ  2B%p? curvesinside those regions. At any given point of such a
279~z T t a2 el 1. (49  curve, a core-asymmetric soliton branches off from the core-

symmetric soliton, similarly to what occurs for the NLDC
Next, we substitute the values dB4/B,) and B,/B,), solitons. Let us note that the following analysis can only

found from Egs.(3.39 and (3.3d), into Eq. (3.3 in which determine the location of pitchfork bifurcation, i.e., one for
we neglect the terms quadraiticl’inz. This gi.ves which the asymmetry between the components of the solu-

tion vanishes at the bifurcation point and increases gradually

b4 1 b2 bZ b3 beyond it.
(——qz)—— (——q '82 -+ '6; x Thus, let us assume that the bifurcation occurspat
16 2\ 4 va®+b?  2(\a*+b?) =po, =0o. Near the bifurcation point, i.e., fop=p,

+8p, g=Qqp+ 49, the asymmetry of the solution is small:

X|Z b2+ ) 46b +1=0 (4.5
4 Jaz+p2| T ' Aj=Ag+ A1, A,=u(Ay+SA,), a=agtda,

Equations(4.4) and (4.5, in which b and q are the un-
knowns andZ is the larger root of Eq(3.9), determine the
approximate boundaries of existence of the core-asymmetric
solitons of the DCDP. Equationig.4) and(4.5) were solved .
using the Maple symbolic calculations package, and the cor"€réAq, Bo, ao, andby, are the solutions of Eqe3.13),
responding results are presented in Figs. 1 afiagh-dotted with t'he sublndgx 0 here and belo_vv denoting quantltle_s that
lines). Naturally, it is much easier to solveumerically pertan_w to th_e bifurcation point. As is well known, at a pitch-
these two equations than the full set of six equatighg). [0k bifurcation, one has

In reality, finding the boundaries of these regions still
leaves the ambiguity as to on which side of the boundary the 8A1 5,681 ,,8a,80b=0(/6p,\5q).
solution exists. A rigorous answer to this question requires

carrying out more involved cglculations_ than th(_)se presenteq}hen, substituting Eq4.6) into Eq. (3.3) and retaining only
above. H(_are we WI|| qnly brlefl_y describe the idea and thethe terms of order (3p, Jq), one obtains @omogeneous
resu_lts, without going into detalls. linear system forSsA,,, 6B;,, da, and éb. After some

First, one lets rearrangement, that éystem éeparates into two systems: one
b=b. + b is for AA=6A,— A, and AB=6B,— 6B,, and the other

cr !
for 2 A=56A;+ 6A,, 2B=6B,+ 6B,, da, andsb. One can
show (the details are quite involved and therefore not given
here that the determinant of the latter homogeneous system
is always nonzero fo3>0, and thus that system has no
sa., 5b,5A12,BZ,B§=O(5q), nontr_ivial solutions. The condition under which a nor)trivial
‘ solution (AA# 0, AB+#0) of the former system exists is

where the subscripgtr denotes the value of the correspond-
ing parameter at one of the boundaridsl). It is now con-
venient to denot®,/B; =R, with R=0(1). Recall that the
zeroth-order approximatiofR;, is found from Egs.(3.3¢0
and (3.3d), with the terms proportional t(ﬁsi2 being ne-
glected. When terms of ordeiq are retained, theR=R;,  The existence of such a nontrivial solution is a manifestation
+ R, and now Eqs(3.39 and (3.3d are to be consistent of a pitchfork bifurcation occurring at the pointpg,qo),
with one another in the sense th&tl/R), found from Eq. since forAA#0, |A,| is now slightly different from|A,|.
(3.3d), must be equal to SR/R?), wheresR is found from  Thus for the control parametepsandq close to a bifurca-

B]_:Bo+ 581, BZZV(Bo+ 582): b:bo+5b,
(4.6

g=d,+64, a=a,+da,
A1 = (A1t A1

and

mwo 1

AS V2

(4.7)

14 1 _Bzaobo
B2 12) " al+bl
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tion point, along with the core-symmetric soliton, there isThese bifurcation points are found in Figs. 1 and 2 at the

now a soliton with slight asymmetry between its componentsntersections of the bisectorptw)=(q—v) with the

in the two cores, i.e., the core-asymmetric soliton. dashed lines. The knowledge of the location of the bifurca-
To find the location of the bifurcation points, one first tion points on the bisector as well as on the boundaries Eq.

takes some(arbitrary relation between f—u) and @@ (4.1, already gives one a very good idea of what the bifur-
— ), say, cation curves will be.

To solve the five equationgl.7) and (3.13 numerically
(q—v)=vy(p—u), (4.8 when (p—w)#(g—v), one proceeds as follows. Equations
(3.133 and (3.13h can be viewed as a linear system for
and then inserts it into Eq#4.7) and(3.13, while consider- A% and B2, and so can Eq93.139 and(3.139. Then, re-
ing (p—u) as an unknown. Before we explain how this quiring thatA2, found from Eqs(3.133 and(3.13b, be the
procedure was implemented for geneydh Eq. (4.9), letus  same asA?, found from(3.139 and (3.13d, and similarly
observe that analytical solutions of E¢8.13, (4.7), and  for B2, one obtains the two equations
(4.8) can be easily found in two particular cases. The first 5
( a? (p-m) pa

case is when, sayB,=0, and then from Eq(4.7) one has (1_ p*a’p’ & 3
A3=v2, which is equivalent to the bifurcation value for the |8 (a*+b?)3/| 4v2 V3 Ja2+ b2
asymmetric soliton of the NLDC; see E@.5b. The corre-

sponding bifurcation points are found in Figs. 1 and 2 at the 2
intersections of the dashed lines and the boundaries Eg. X Z+(q_v) )
(4.1. The second special case is whegn{ u)=(qe—v),

Ag=Bg, anday=bg; then Ay and a, are found from Eg. 1 p%ab
(3.11), and Eq.(4.7) yields the following information. 127 aZ¥p?

(i) u=1, v=1 (A,A,>0, ByB,>0): for B>1,

> (p—p) @ pa’ {( ) bz}
— e A T T —— — V) —( y
M=1rg Pk (499 22 82 (el
(4.12a
for <1,
” (1 B%a%p? )( b2 L b
(W) =1rg Pt 8 @0\ 2 vi JaZinl
%) 31 Gl
2 +B X7 +(p— )}
@)~ _ - F M
(AD) -5’ Po l+4 g (4.9p 4
(i) w=1, =1, (AA;>0, B,B,<0): for f>1, (I pabiazy b pbE
2 a“+b 22+ b2)3
no bifurcation point on the rayg+1=p—1; (4.103 2v2 82 (Ya'+b)
a2
for B<1, X|(p—p)— 7 ) (4.12bh
2 1/2 3 B 1/2
Aé:(l——ﬁz) Po=1+ 2 (m) . (4.10n  Taking into account Eq4.8), one observes from Eqét.12
thata® andb? are proportional toff— «). Thus we can take
(i) u=—-1, v=—1 (A;A,<0, B;B,<0): for g>1, a:E\/ﬁ, DZBH, 413
pm 2o 4 3B 4115 which defines andb. Then, dividing Eqs(4.12 through
p-1 4p-1 by (p— ), one obtains two equations farandb, in which

the parameter, defined in Eq.(4.8), plays the role of the
control parameter. Solving those equations numerically with
no bifurcation point on the rayg+1=p+1. MAPLE, one findsd andb and therA? andB? from, say, Egs.
(4.11b (3.133 and(3.13b as

for B<1,

(p—w) (3°+4  pa -~ 23750
2= - 2 — - =z = —
A 2 V2 \/52+62[b +47])/(1 —52+b2) KA(’)’)(p /.L),
(p—w) [b2+4y  pb _ 28%b
2_ 2 _ ab | _ N |
B*="5 v Game et /(1 <253 =Ke(M(P—p) (4.14
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FIG. 3. (a) Total energyE=E,+E, , of the soliton;(b) ratio of
the energy in th&t components to the total enerdy, /E; (c) ratios
E./E, and E,,/E, versusp for the case/3=§, A;A,>0, and
B,B,>0, (g—1)=vy(p—1), wherey=0.9. The solid lines in all
the three figures and the dashed lineganand(b) show the results

respectively. In(c), the dashed line show£(, /E,) and the dash-
dotted line showsK,, /E,) for the core-asymmetric solitons.
ing quadratic equation fomp(— ), we obtain the location of

parametery. [Note that one should only keep the r@tthat
yield(s) A>>0 and B?>0 according to Eqs(4.14.] The
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FIG. 4. Same as in Fig. 3, but novg{1)=y(p—1) with y
=0.85 andA;A,>0, B;B,<0.
for the core-symmetric soliton and the core-asymmetric solitons, ) L
results of such calculations are presented in Figs. 1 and 2 as
the dashed linepexcept for the second bifurcation curve in
Fig. 2(c); see below.
Substituting Eqs(4.14) into Eq.(4.7) and solving the result- _ Let us now explain why solving the equations ®rand
b with MAPLE is relatively easy, while solving the full sys-
the bifurcation point on thep,q) plane as a function of the tem (3.3) with MAPLE would be very difficult.MAPLE’S nu-
merical solver requires an initial guess to be provided in
order to find a root of a system of algebraic equations. Now,
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when solving the equations far andb, we know the solu- 14
tion along the bisectorg— «)=(gq—v») and at the bound-
aries(4.1) [see the remark after Eqg&t.11)], and hence we 1ol
know how many solutiongzero, one, or twpwe should
expect. This limits the number of the initial guesses that one
must make. On the contrary, when solving E(3) we do

not knowfor certainhow many solutions there will be. Even
though the boundaries of the regions of existence and the
bifurcation curves give theninimumnumber of solutions
(for givenp andq), there may exist other bifurcation curves
that correspond to bifurcations other than pitchfork ones and
which, therefore, cannot be found by the procedure described 4
above. Such a bifurcation curve was indeed fo(sek Sec.
V). Thus themaximunmumber of solutions to Eq$3.3) and, er
consequently, the number of the initial guesses one should 1 > 3
take, is not known. Thus we found it essential to implement P
the scanning procedure described at the end of Sec. lll.

&
+
3
g

V. NUMERICAL SOLUTION OF EQS. (3.3 0.9r .

In this section, we will present the plots of the regions of
existence of various types of the soliton solutions of Egs. __ o7}
(1.1), as given by their variational approximations, Egs. §
(3.3, and describe what a representative soliton of each type +
looks like. In Figs. 1 and 2 we have plotted the regions of § °%
existence of the solutions in the,q) plane(shaded areas <§ 0.4r
The boundaries of those regions were obtained as explaineds
in Sec. IV, and in all the cases but ofgee Fig. Z)], no
other boundaries were found from the numerical solution of 0.2y
the full system(3.3). This justifies the effort made on the oAk
analysis that we did in Sec. IV. . ‘

The general comments about all the plots in Figs. 1 and 2 1 2 3 4 5 6 7 8
are as follows. First of all, we recall that outside the shaded p
areas, there exists only solutions with either botbr both

0.3r

v components vanishingf. Sec. Il). Next, inside the open T T T T
angles bounded by the straight lines, there are always the %9 © -7 AS
core-symmetric solitons satisfying conditiof8.12. The = o8f
asymmetric solitons exist inside the upper right-hand part of = o7l
the bifurcation curvegdashed lines except for the case de- =
picted in Fig. Zb); see below. The dash-dotted lines in these N os
two figures represent the boundaries where two of the com- T ost
ponents(either u; , or v, ,) must vanish and the resulting <
two-component soliton coincides with the asymmetric soli- Eﬂg o4
ton of the NLDC. ~, o3 T 1
In Figs. 3—7, we plotted the dependences of the energy of [,f 0k - AS
the soliton’s components, where the energies are defined by ~—
the formulas o1
. . G1 2 3 4 1‘3 6 7 8
Eulzf |Ul|2d7', Eu2:f |U2|2dT, Eu:Eul'i_Euzv P

FIG. 5. Same as in Fig. 4, bg=2 andy=1.4.

1= J7m|vl|2d7’ Ey2= J:w|02|2d7' E,=E, TE,, Now we give specific comments about the plots in Figs.
(5.1 1-7.

In Figs. 1a) and 3,8=3%, A;A,>0, andB;B,>0. For
versusp [in what follows to be called “E— p) diagrams’], sufficiently largep and g, one has a second pair of core-
with g changing along the ray&.8) for some representative asymmetric solitonflabeled “AS2” in Fig. 1(a)], which are
values ofy. (Note that for any one core-asymmetric soliton, created as a result of a pitchfork bifurcation from the core-
there is actually a pair of such solutions, with one member oBymmetric soliton. Thus the total number of solutions
the pair differing from the other by interchanging the sub-changes, as one crosses the bifurcation curves from left to
scripts 1 and 2. right, from 1 to 3 and then to 5. One can see, from Fig. 3,
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FIG. 7. Same as in Fig. 6, byt=1.2.

pointsA andB represents the behavior of both the core-symmetric

and AS1 solitons, whereas on the right of pditit represents the

behavior of the core-symmetric and AS2 solitons.

that for the first core-symmetric solitdiabeled “AS1” in

Fig. 1(a)],

(ug,v1)—(Ug,vo),

(u2102)_>(010)

(5.2a

asp,q—«, where {iy,v) is the vector soliton of the VNLS
(2.4) for the givenp andg. (By convention, we consider

Uy andu to be positive. The following remarks need to be
made about formul#5.29 and similar formulas in the re-
mainder of this section. It can be showsee Appendix A
that the limit(p,q>1, « fixed) taken in Eqs(1.1) is equiva-
lent to the limit(p,q fixed, k<1). Therefore, for large and

g, the solitons in the two cores can be considered as only
weakly coupled to each other. Therefore, in this limit, the
form of the soliton in either core must asymptotically tend to
that of one of the possible solutions of the VNI&4). The
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role of the variational method is that it determines which In Figs. 2b) and 5,8=2, A;A,>0, andB;B,<0. Be-
particular configuration of the soliton components is realizedween the upper straight line boundary and the dashed curve

in each concrete case. corresponding to a pitchfork bifurcation, there exists a core-
Now, the second core-asymmetric soliton has, in the samasymmetric soliton with very smalth components. More-
limit p,g—c and fory<1, over, a feature that is not seen in this figure, because of the

latter’s limited scope, but that can be found from E@s7)
(Ug,v1)—(Ug,v0), (Uz,v2)—(Ugp0), (520  and(4.12—(4.14), is that the bifurcation curve comes closer
to the straight line boundary gsandq increase, and so for
p and q large enough, thes components of that core-
asymmetric soliton approach zero. For this reason, we chose

whereug, andv g were defined in Eq(2.7). (For y>1 the
situation is reversed by interchangingandv.) The form of

the core-symmetric soliton with a given value ¢fis the o 16 present a separatE € p) diagram for that solution.
same as the form of the vector soliton of the VNLS with Next, let us emphasize that the dash-dotted curve, even

(a/p)=. Equations(5.2), and their analogs for other cases gygh it passes through the interior of the open angleois
below, allow one to extrapolate th& ¢ p) diagrams, found 3 cyrve of a pitchfork bifurcation occuring from the core-
for a specific value ofy, to other values ofy. . __symmetric soliton. In fact, the core-asymmetric soliton along
It is worth noting that the first core-asymmetric soliton yhat part of the curve islistinctly different from the core-

above is a four-component analog of the asymmetric Sonto@,ymmetric soliton existing for the same valuespofind g
of the NLDC, since for it (except at the pointp=2, g=q..(D]).

A, B, Note that for bothy.<1 apdy_> 1, the asymptotical form

= (5.3  of the core-asymmetric soliton is

2 2

Uy,v1)—(Ug,Vo), Us,V2)— (Ugo,0). 5.
The asymptotic behavior, expressed by E52b), of the (U1,01) = (Uo,vo)  (Uz,02)=(UooO) 69

AS2 soliton also deserves a separate remark. Indeed, Eq. | Figs. 4c), 6, and 7,8=2, A;A,<0, andB,B,<0. The
(5.2h holds for the casey<1, whereas fory>1, as noted second bifurcation curvéthe one with the cugporresponds
above, theu andv components of the soliton must be inter- tg the occurrence ofwo pairs of core-asymmetric solitons
changed. Thus the asymptotic form of the AS2 soliton forthat branch off from the already existing core-asymmetric
y>1lis soliton as a result of aaddle-nodéifurcation. This second
bifurcation curve, which could not be found by the methods
(Ug,01)=(Uo,v0),  (Uz,02)—=(0woo)- (529 gescribed in Sec. IV, was found numerically by solving all
six Eqgs.(3.3). The number of solutions in this case changes,
as one crosses the bifurcation curves from left to right, from
1 to 3 and then to 7. We will denote the three different types
of the core-asymmetric solitons as AS1, AS2, and AS3. The

continuous with respect to the control parameterand q ds in thei di lear] ¢ :
(and, consequentlyy). The key to resolving this seeming trends in their E—p) diagrams are clearly seen rom'Flgs. 6
' nd 7, which correspond tp=1 andy=1.2, respectively.

contradiction lies in keeping the correct order when paSSInilote the nonsmooth behavior of the curves corresponding to

to the limits _(p,q.) and.y _1' We presgnt the details O.f the AS1 soliton in Fig. 6: such a behavior is characteristic of
the explanation in Appendix B; here we will only note that in degenerate(due to y—1) saddle-node bifurcation, which
all the other five cases considered below, such a situatiof} 29 0 ' .
occurs to that soliton. Note also that the corresponding
does not occur. R .
curves in Fig. 7 become smooth, since the degeneracy of the

In Figs. 4b) and 4,3=2, A;A,>0, andB;B,<0. For ; L
both y<1 and y>1, the asymptotidas p,q— ) form of saddle-node bifurcation is now removed. Ror1 we have

the core-asymmetric soliton is

Comparing Eq(5.2b with Eqg. (5.209, one sees that there is
a discontinuity in the soliton’s form whepcrosses the value
of 1. Of course, in reality, the solution of Eq8.3) must be

(ul!vl)_)(UOIUO)I (u21U2)_’(_u00,0) for ASl,
(5.4) (5.6a

(U, v1)—(0pgo), (Uz,v2)—(—Uge0) for AS2,
(5.6b

(ug,v1)—(Ug,vg), (Uz,v2)—(0,~vqg).

We did not present a separate figure for the gases,
A1A,<0, andB,B,<0 since only the core-symmetric soli-
tons exist in this case. The domain of existence of those
solutions is the open angle bounded by the straight lines (U1) = (000, (Uz,v2)=(~Up,~vo) for A(8536©
whose equations are given by H4.1) with v=pu=—1. '

In Fig. 2@), =2, A1A,>0, andB,B,>0. We did not  asp,q—c.
present the E—p) diagram for the core-asymmetric soliton
in this case because(the diagramis very similar to that for
the first core-asymmetric soliton in Fig. 3. The only differ-
ence between those two cases is that for the core-asymmetric In this work, we have addressed the problem of the exis-
soliton in the present case, the ratip,(v,) tends to zero a tence of various types of solitons of the DCIR1). These
little bit faster than the ratiou,/u,) does ap,q—«, while  equations are a generalization of the NLDC mo(l) for
in Fig. 3, the situation was the opposite. Thus the corethe case when polarization of light is taken into account.
asymmetric soliton in this case is also a four-component anarherefore, it was natural to draw analogies with the known
logue of the asymmetric soliton of the NLDC. results for the NLDC and also with the single core with two

VI. CONCLUSIONS
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orthogonal polarizations, described by the VN{Z4). dergo significant changes is scaledpas = O(E~?). Thus a

To find the various types of solitons of the DCDP, we sufficiently high-energyand hence narrowunstable soliton
employed the variational method, in which we approximatedcan still propagate severfkc O(E)] soliton periods along
the exact profiles of the solitons by Gaussians. In that waythe fiber before being significantly changed by the instability.
we found that there are several types of solitons that can b&he exceptional solitons of grouiii), denoted as AS2 in
classified as follows: (i) core-symmetric solitons that are Fig. 2(c) have an instability growth rate of=0(1), which
the analogs of the symmetric and antisymmetric solitons ofs much slower than that of the other unstable solitons. Thus
the NLDC, (ii) core-asymmetric solitons that for large valuessuch a soliton could exist for marjy< O(E?)] soliton peri-
of their energy have almost all the energy concentrated iwds, and so it could possibly be observed, as a transient state,
one of the cores, an(i) core-asymmetric solitons for which in a numerical or a real-world experiment with the DCDP
the ratio of the energies in the two cores is finite in the limitmodel. Let us note that ifil4], it was reported that certain
of infinite total energy. Grougii) includes, for3=3%, the unstable solitongcalled there ‘A-type states) could also
AS1 soliton in Fig. 1a), and for =2, it includes the core- propagate in low-birefringence fibers over relatively long
asymmetric soliton in Fig.(@) and the core-asymmetric soli- distances before decaying.
ton with smallv components in Fig. ®). Group (iii) in- As for the exceptional case of solitons of gralip which
cludes all the other types of the core-asymmetric solitonsis the core-symmetric soliton in Fig.(&, its stability or
All of the core-asymmetric solitons exist only above certaininstability could not be established within the framework of
threshold values of the soliton’s energy. In most cases, wéhe first-order calculations carried out [i5]. One could
were able to determine the corresponding bifurcation curveenly state that the instability growth rate, if any, for such
without solving the full system of the variational equations, solitons would be on the order ofdt the largestin the limit
Egs.(3.3. On the contrary, the core-symmetric solitons canE>1). In fact, if further studies would reveal that
exist for any value of the energy, with equal energy propa-=o0(1), then that would mean that this type of circularly
gating in each core. polarized, core-symmetric soliton is quasistatue stable, if

Let us note the following about the solitons of gro@ip) =~ A =0) for large energies. This would be in distinct contrast
whose regions of existence are shown in Figb) &nd Zb).  with the NLDC, where the symmetric solitons have an insta-
Parts of these regions are located below the timel. For  bility growth ratex =O(E) for E>1. We also remark that in
—1<qg<1 andp>1, thelinearizedEgs.(1.1), in which the  analogy with the results for the NLDC, all types of the core-
z dependence is replaced by factet® ande'% according symmetric solitons of the DCDP are likely to be stable for
to Eqg.(3.1), have both exponential and oscillatory solutions.sufficiently low value of their energy.
It is known that the presence of the latter implies that the The two types of solitons of grouii) whose regions of
stationary solutions of the full, nonlinear Eq4.1) may be existence in thek,,E,) plane are shown in Figs.(d and
not exponentially localized but instead may have oscillating2(a), have been proven 5] to be stable for large values of
“tails” with asymptotically constant amplitude. An example their energy. Using the analogy with the asymmetric soliton
of such a situation can be found [19]. Therefore, it is of the NLDC, we speculate that these two types of solitons
possible that the core-asymmetric solitons of Edsl) for of Egs.(1.1) are also stable over most of the region of their
—1<g<1 also have oscillating tails, even though the varia-existence. Let us note that if future studies reveal that the
tional method, being based on the Gaussian ansatz, yieldscare-symmetric soliton in Fig.(2) is either stable or quasis-
localized solution in that region. Determining whether or nottable, as explained above, then one would h@es)bista-
this is actually the case would require numerically solvingbility between the core-symmetric and core-asymmetric soli-
the corresponding ordinary differential equation reduction oftons in the DCDP circular polarizations. For the third type of
Egs.(1.1), which we do not attempt here. Note that the core-solitons of group(ii), the stability analysis in the limiE
symmetric solitons must be exponentially localized even for>1 s trivial, because in this limit the soliton becomes al-
—1<q<1, because for these, the effective value of themost identical with the two-component asymmetric soliton
propagation constant of the component is ¢+1)>0  of the NLDC, and thus it must be stable. Since the solitons of
rather than just; cf. Eq. (3.13. this type have rather small component$see Fig. #b)] and

Now we will briefly comment on the stability of the vari- hence are close to the two-component asymmetric solitons
ous types of solitons in the limit of large total energigs, for any value of their energy, then we speculate that such
=E,+E,—>. In Sec. V, the variational method allowed us solitons must be stable for almost all values of their energy.
to determine the exact asymptotic form of the solitons in this
limit. For sufficiently large but still finite values o€, the APPENDIX A: SCALING TRANSFORMATION
solitons take on their respective forms, E@5.2), (5.4)— FOR EQS. (1.1 AND (3.3
(5.6) plussome small c_orrec_tions, whose magnitude is of the | .ra e will show that the limit ,q)— o in Egs. (3.3
order 1E and which, in principle, can be computed. The iq oqivalent to the limit of weak coupling of the two cores.
stability result; reported beloyv pertain to t.h_ese, asymptotiy, his end, we first notice that solitons of Ed8.3) [and
cally exact, solitons. The details of our stability analy5|s'W|II Egs. (1.)] with p,q>1 have large amplitudes and small
be presented elsewhel£5]. All but one type of sq[[tons N widths, which is seen from the special solutions presented in
group i), and all but one type of s_qhtons in groui), ar€  gecs. Il and 1l and also was confirmed by our numerical
unstable where> 1, with the instability growth rat@ being 5oy tion of Eqs.(3.3). Next, one can perform the following

on the order ofD(E)=0(+/p,/q). Note that in the soliton’s scaling transformation in Eq€1.1):
own reference frame, this instability is weak, since a typical
distance(“soliton period”) over which the soliton can un- u=u/\e, v=vlJe, t=Te, z=Ze. (Al
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Let the amplitudesi andv, as well as the soliton’s width small, then the resulting solution, by continuity, must take
and dispersion length expressed in terms of the rescaled cthe form

ordinates7 andZz, respectively, have their magnitudes of

order 1. Then taking the limi¢ <1 in Eq. (A1) corresponds  (y, ,4,)—[(O,v0(1+0))], (Uy,v5)—[(Ug(1+0O),0)],

to the limitp,g>1 in terms of the original variablegn @ct, (B3)

the propagation constants are rescaled as follows: p/e

andq=a/s, wherep,q=0(1).] On the other hand, the til- \;here the notatio® is used for a quantity that satisfies
ded quantities satisfy Eq6L.1) with k=& [recall that we set
k=1 in Egs.(1.1)]. Thus we have shown that the limt
p.g>1, « fixed) in Egs. (1.1) is equivalent to the limit(
p.q fixed, k<1), which is the limit of small coupling be-
tween the cores.

lim lim O=0. (B4)

p—>00'y~>l

Note that in Eq(B4), the limit y— 1 must be taken first. The
asymptotic form(B3) of the soliton in question is different
from both Egs.(5.2b and(5.29. However, if one now first
fixes y at some value not equal to 1 atfien considers the
Here we will show how the seeming contradiction, indi- limit of large p (andq), then the asymptotic form of the AS2
cated in the main text, regarding the asymptotic form of thesoliton in Fig. 1a) will indeed be given by either Eq§5.2b
AS2 soliton in Fig. 1a) is resolved. First, we notice that or (5.29. We verified the validity of this statement by nu-
when y=1, then that soliton has the following symmetry of merically solving Egs.(3.3) for y=0.97 (8= £, ALA,>0,

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE
SECOND CORE-ASYMMETRIC SOLITON IN FIG. 1 (a)

its components: andB;B,>0) and p between 5 and 5@the corresponding
plots are not presented here due to lack of spad&e ob-
Up=vp, Ux=vy, U#FUp. (B1)  served that, for the values of parameters specified in the pre-

Th ist  thi luti firmed b licit vious sentence, the numerical solution agrees reasonably
€ existence of this solution was confirmed by expliCit nU-q yith Eqg. (B1) for p<8, whereas it begins to shift to-

merical solution of Eqs(3.3). Note that whenp=qg—, wards the as :
_ _ . X ymptotic form Eq5.2b for p>15. Forp
u,=O(p) andu,=0O(1/\p). (For definiteness, we witiot ~50, the difference between the numerical solution and the

consider here the equivalent case where the subscripts 1 aegrresponding asymptotics E€.2b is less than 10%. This
2 are interchangedThus the asymptotic form of that soliton 2
suggests that the quantity above must have the order of

s (y=1) magnitudeO(y'y—1)O(1/y/p). Thus we have demonstrated
(U1,01)— (000,  (Us,02)—(Ugo0). (B2) that there is no contradiction between the continuity of the
solution of Egs(3.3) with respect to the control parameters,
Now, if one fixesp (or g) to be some large but finite value, on one hand, and the asymptotic form@ta2b [or (5.29]
while changing y slightly so that ¢/—1) is sufficiently for the AS2 soliton in Fig. (a), on the other.
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