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Solitons in nonlinear fiber couplers with two orthogonal polarizations
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We consider a model of two coupled nonlinear optical fibers with two polarizations in each fiber. This study
only considers the two cases when the polarization of the light in each fiber is either linear or circular. We use
the variational method to find families of stationary solitary waves~solitons! of this model. In particular, we
demonstrate that the variational method can be used in a universal fashion to find certain types of bifurcations
of the stationary solutions. All the families of solitons that we find can be classified in three groups:~i!
core-symmetric solitons that have equal energies in each core,~ii ! core-asymmetric solitons that for large
values of the energy have most of the energy concentrated in one core, and~iii ! core-asymmetric solitons for
which the ratio of the energies in the two cores remains finite when the total energy of the soliton becomes very
large. The first two groups of solitons have direct analogs with solitons of the nonlinear fiber coupler that has
only one polarization in each core. We also briefly discuss the stability properties of the various solitons found.
@S1063-651X~97!07805-7#

PACS number~s!: 03.40.Kf, 42.65.Tg, 42.81.Gs
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I. INTRODUCTION

Solitons and other nonlinear states in coupled optica
bers@nonlinear directional couplers~NLDCs!# have been ex-
tensively studied theoretically over the past several ye
see, e.g., Refs.@1–9#. Besides being of interest in their ow
right, such solitons may find applications in future comm
nication systems as information carriers in all-optical switc
ing devices@9#. Past works have only considered models
which each core of the NLDC was monomode. In real
however, it is necessary to take into account the polariza
of light. If one allows two polarizations in the coupled core
this will render the system’s dynamics richer than it wou
be in the case of monomode cores, and will open the wa
predict new types of solitons, as well as their bifurcatio
This is the general objective of the present work.

We consider a model based on the equations

iu1,z1
1
2u1,tt1u1~ uu1u21buv1u2!1ku250,

iv1,z1
1
2v1,tt1v1~ uv1u21buu1u2!1kv250,

iu2,z1
1
2u2,tt1u2~ uu2u21buv2u2!1ku150,

iv2,z1
1
2v2,tt1v2~ uv2u21buu2u2!1kv150, ~1.1!

which describes pulse propagation in two adjacent fi
cores, with two orthogonal polarizations existing in ea
core. In Eqs.~1.1! we have used the standard nondimensi
alized variablesu1,2 andv1,2 for the envelopes of the electri
field in the pulse, andz andt for the distance along the fibe
and for the retarded time, respectively~cf., e.g.,@10,11,6#!.
Each polarization component in a core is coupled linearly
551063-651X/97/55~5!/6107~14!/$10.00
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the parallel polarization component in the other core, wh
inside the same core, the orthogonal polarization compon
are coupled nonlinearly. We will consider the cases wh
b5 2

3 andb52, which correspond, respectively, to propag
tion of linearly and circularly polarized light inside each co
~cf. @12#!. Any values ofb between23 and 2 will correspond
to elliptically polarized eigenmodes~cf. @11,12#!; however,
we will restrict ourselves to considering only these tw
cases. Let us note that the caseb52 pertains not only to two
circularly polarized modes but also to two parallel, linea
polarized modes with distinct carrier wavelengths. The lin
coupling constantk can always be scaled~@14#! to an arbi-
trary ~nonzero! value. Thus, in what follows, we will set

k51.

We will refer to Eqs.~1.1! as the ‘‘dual core, dual polariza
tion’’ ~DCDP! model.

One of the main assumptions made in the derivation
the DCDP equations is that there is a large phase biref
gence in each core, so that the birefringence beat length
tween the orthogonal polarizations is much shorter than
nonlinear, dispersion, and coupling lengths, with the lat
three lengths being of the same order of magnitude. Gi
the large birefringence of the cores, one can then disc
certain rapidly oscillating terms~cf. @11,12#! and, after a
simple phase transformation, obtain Eqs.~1.1!. The other
two assumptions made in the derivation of Eq.~1.1! are that
~i! the propagation constants of the parallel polarizations
equal,~ii ! as are the linear coupling constants for the verti
and horizontal polarizations.

As mentioned above, the DCDP generalizes the c
ebrated equations of the NLDC that have only one polari
6107 © 1997 The American Physical Society
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tion in each core~for a review see, e.g.,@7#, and references
therein!. ~The latter model will be referred to simply a
NLDC throughout the text.! On the other hand, in the limi
when the linear coupling constant between the parallel po
izations vanishes and one obtains two uncoupled cores
DCDP reduces to another well-studied case, that of two
thogonally polarized pulses propagating in the same core~In
such a case, the pulses in the orthogonal polarizations
said to form avector soliton.! Thus it is natural to develop
our analysis, as well as to present the results, for the DC
proceeding from the results already known for the two afo
mentioned basic models. The most important piece of in
mation pertaining to these models is the form of their s
tionary, solitonlike solutions; for brevity, we will call suc
solutions simply ‘‘solitons’’ without implying that Eqs.~1.1!
are integrable by the inverse scattering transform. The rea
why we restrict our attention only to solitons is that ev
though there are other types of stationary solutions, wh
intensity profile has more than one maximum, they have
ways been found to be structurally unstable~see, e.g.,
@4,13,14#!, and thus they do not seem to be important in
evolution of an arbitrary initial pulse.

In this paper, we study the problem of the existence
soliton solutions of the DCDP. To this end, we employ t
variational method~see Sec. III below!, which yields six
nonlinear algebraic equations for the amplitudes and wid
of the soliton’s components. Those equations can be sol
in general, only numerically; however, certain important
formation about the solutions can be obtained either ana
cally or by numerically solving only two~instead of six!
equations. We will also briefly report on the main resu
about the stability of the solitons found, with a more detai
exposition of the stability analysis being given elsewh
~@15#!.

The rest of the paper is organized as follows. In Sec. II
review the results for the soliton solutions of the two ba
models: the NLDC and the single core with two orthogon
polarizations. In Sec. III, we formulate the variation
method for the DCDP~1.1!, derive six algebraic equation
for the amplitudes and widths of the soliton’s four comp
nents~u1,2 andv1,2!, and then present some simple solutio
to those equations in special cases. In Sec. IV we find
boundaries of the regions of existence of various types
solitons of the DCDP. Some of those boundaries can be
termined quite simply analytically, while the others can
determined by solving numerically two nonlinear algebr
equations, obtained from the full set of six equations. Amo
the latter group of the boundaries, there are bifurcat
curves that correspond to apitchfork bifurcationthat occurs
to a core-symmetric soliton@see the definition after Eqs
~3.13!# thereby giving rise to a core-asymmetric one. Let
note that although the method we used to find these bifu
tion curves is quite simple, we are not aware of any ear
works where such a method has been used for the s
purpose. In Sec. V, we present and discuss the results o
numerical solution of the full set of equations, Eqs.~3.3!. In
Sec. VI, we summarize the results of this work and a
briefly describe the stability of the various types of solito
in the limit of large energy. In general, in that limit, onl
solitons that are four-component analogs of the asymme
soliton of the NLDC are stable. However, as it has be
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found in @15#, there are two other types of solitons of th
DCDP. Solitons of one of these types, although being
stable, have a much slower instability growth rate than t
of all the other unstable solitons. The stability of the seco
type of solitons has not and could not be established wit
the framework of first-order calculations. Thus even if t
latter type of solitons may be found to be unstable in futu
studies, its instability growth rate will still be quite low, thu
it may be useful as an intermediate state, and even impor
in the evolution of an arbitrary initial pulse.

II. REVIEW OF THE TWO BASIC MODELS

We start with a review of the NLDC model. It is de
scribed~see, e.g.,@7,6#! by two linearly coupled nonlinea
Schrödinger ~NLS! type equations

iu1,z1
1
2u1,tt1u1uu1u21u250,

iu2,z1
1
2u2,tt1u2uu2u21u150,

~2.1!

in which we have set the linear coupling constant betwe
the cores equal to unity. Soliton solutions of Eqs.~2.1! can
be found in the form

un~z,t!5eipzun~t!, n51,2, ~2.2!

wherep5const andun(t) are real valued.
Equations~2.1! possess symmetric@with u1(t)5u2(t)#

and antisymmetric@with u1(t)52u2(t)# solutions, which
exist for p>1 andp>21, respectively:

u1
~s!~t !5u2

~s!~t !5A2~p21!sech@A2~p21!t#,

u1
~an!~t !52u2

~an!~t !5A2~p11!sech@A2~p11!t#.
~2.3!

In @3#, it was shown that in addition to these two types
solutions, forp> 5

3, there exists an asymmetric solution wi
u1(t)u2(t).0 andu1(t)Þu2(t). An exact analytical form
of the asymmetric solution is not known; however, an a
proximate expression can be found with the variatio
method~see Sec. III!. It should be noted that the asymmet
between the components of the asymmetric solution is ab
at the point of thepitchfork bifurcation, p5 5

3. Asymptoti-
cally, asp→`, u1(t)/u2(t)5O(p).

In @4#, a numerical study of stability of these three typ
of stationary solutions was undertaken, and its results ca
summarized as follows.

~i! The antisymmetric solution is unstable with respect
small perturbations of its shape forp>20.6, @this value was
read off of Fig. 1~a! in @4## i.e., in almost the entire region o
its existence.

~ii ! The symmetric solution is stable forp< 5
3, i.e., up to

the bifurcation point, where it loses stability and remai
unstable for all larger values ofp.

~iii ! The asymmetric solution is unstable in a tiny regi
5
3<p<1.85, and is stable forp>1.85. The existence of tha
small region of instability indicates that the bifurcation atp
5 5

3 is subcritical. That is, for
5
3,p,1.85, the slopedE/dp

,0, where the soliton’s energyE is defined by
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E5E
2`

`

dt~ uu1u21uu2u2!.

The subcritical nature of the bifurcation was first discove
numerically in @4#, and recently it was shown@8# that the
variational method can also grasp this feature. In the pre
work, however, we will restrict our attention to only findin
the location of the corresponding bifurcation points for E
~1.1!, without resolving the question of whether those bifu
cations are subcritical or not.

The second basic model is a single core with two ortho
nal, nonlinearly coupled polarizations. It is described by
following equations:

iuz1
1
2utt1u~ uuu21buvu2!50,

ivz1
1
2vtt1v~ uvu21buuu2!50,

~2.4!

which were first derived in@11#. The values of the nonlinea
cross-coupling coefficient,b5 2

3 and b52, correspond, re-
spectively, to linearly and circularly polarized eigenmodes
the fiber. We will refer to Eqs.~2.4! as to the ‘‘vector NLS’’
~VNLS! equations.

Stationary solutions of Eqs.~2.4! can be found in the form

u~z,t!5u~t!eipz, v~z,t!5v~t!eiqz, ~2.5!

with u(t) andv(t) being real. We will refer to the solution
~2.5! as to a ‘‘vector soliton.’’ In@16,17#, it was shown that
the vector solitons that have bothu andv components non-
zero exist in a domain of the (p,q) plane located between th
straight lines:

qcr
6 5SA118b21

2 D 62

p. ~2.6!

Outside the above domain, as well as at the boundaries, t
are only solutions with either a 0° or a 90° angle of pol
ization:

q5qcr
1 : u00~t!5A2psechA2pt, v~t!50,

q5qcr
2 : u~t!50, v00~t!5A2qsechA2qt. ~2.7!

When p5q, a solution of the VNLS is a composite vecto
soliton with a 45° angle of polarization:

p5q: uu~t!u5uv~t!u5A2p/~11b!sechA2pt
~2.8!

~the relative sign ofu and v is unimportant!. For qcr
2 ,q

,qcr
1 andpÞq, an analytical form for the vector soliton, t

be denoted as (u0 ,v0), is not known; however,u0(t) and
v0(t) can be found numerically; see, e.g.,@17#. Lastly, all
the vector solitons of the VNLS were found to be stable, a
they were shown to have no bifurcations@13#.

III. VARIATIONAL METHOD
AND ITS SIMPLEST SOLUTIONS

To find the stationary soliton solutions of Eqs.~1.1!, we
employ the variational method. To this end, we take a Gau
ian ansatz for the functionsu1,2 andv1,2:
d

nt

.
-

-
e

n

re
-

d

s-

u1,2~z,t!5A1,2e
ipze2a2t2/2,

v1,2~z,t!5B1,2e
iqze2b2t2/2.

~3.1!

It is known that a Gaussian profile is able to approximate
exact hyperbolic secant soliton of a single NLS equat
@18#, and also solitons of linearly coupled NLS-type equ
tions @19#, quite well. Moreover, as has already been me
tioned, the variational method yields rather accurate resu
even in the vicinity of the bifurcation that occurs to the sym
metric soliton in the NLDC model@8#. Thus, we expect tha
it will also be able to sufficiently closely approximate th
solitons of the DCDP and their bifurcations.

Let us note that the widths of the soliton’s componen
which are linearly coupled to each other, are taken to
equal, the reason being that earlier numerical results@3,5,19#
for linearly coupled NLS-type equations suggested that
widths of the linearly coupled components do not sign
cantly differ. On the other hand, the widths of the orthogo
components, which are only coupled nonlinearly, must
allowed to be different; otherwise, for example, one wou
not be able to satisfactorily match the exact result~2.6! with
its variational approximation@cf. Eq. ~4.3! below#.

Now, one inserts ansatz~3.1! into the Lagrangian density

L5
i

2 (
n51,2

@~un* un,z2c.c.!1~vn* vn,z2c.c.!#

1 (
n51,2

F2
1

2
~ uun,tu21uvn,tu2!1 1

4 ~ uunu41uvnu4!

1
b

2
uunu2uvnu2G1~u1* u21u2* u1!1~v1* v21v2* v1!

of Eqs. ~1.1! and then integrates the result overt to obtain
the averaged Lagrangian

1

Ap
^L&52 (

n51,2
F18~An

2a1Bn
2b!1

1

2SAn
2 p

a
1Bn

2 q

bD G
1 (

n51,2
F 1

4&
SAn

4 1

a
1Bn

4 1

bD1
b

2

An
2Bn

2

Aa21b2
G

1
1

a
A1A21

1

b
B1B2 . ~3.2!

Since we are looking for stationary solutions, we set

d

dz
A1~z!5•••5

d

dz
b~z!50.

Then the Euler-Lagrange equations, derived from Eq.~3.2!,
yield the following system of nonlinear algebraic equatio
for the amplitudes and the widths:

a2

4
1p2

A1
2

&
2b

B1
2a

Aa21b2
2
A2

A1
50, ~3.3a!

a2

4
1p2

A2
2

&
2b

B2
2a

Aa21b2
2
A1

A2
50, ~3.3b!
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b2

4
1q2

B1
2

&
2b

A1
2b

Aa21b2
2
B2

B1
50, ~3.3c!

b2

4
1q2

B2
2

&
2b

A2
2b

Aa21b2
2
B1

B2
50, ~3.3d!

S a28 2
p

2D ~A1
21A2

2!1
1

4&
~A1

41A2
4!1

b

2

A1
2B1

21A2
2B2

2

Aa21b2
a3

1A1A250, ~3.3e!

while we find it convenient for future use, to write the ne
equation in the form

S b28 2
q

2D SB1

B2
1
B2

B1
D1

1

4&
SB1

2 B1

B2
1B2

2 B2

B1
D

1
bb3

2~Aa21b2!3
SA1

2 B1

B2
1A2

2 B2

B1
D1150.

~3.3f!

In the above system of equations, the propagation const
p andq play the role of control parameters.

There are two special cases for which analytical soluti
of Eqs. ~3.3! are known. The first such case corresponds
the reduction of the DCDP to the NLDC basic model. In th
case, set, say,B15B250, and then Eqs.~3.3a!, ~3.3b!, and
~3.3e! yield

a2

4
1p2

A1
2

&
2
A2

A1
50, ~3.4a!

a2

4
1p2

A2
2

&
2
A1

A2
50, ~3.4b!

S a28 2
p

2D ~A1
21A2

2!1
1

4&
~A1

41A2
4!1A1A250.

~3.4c!

By substracting Eq.~3.4a! from Eq. ~3.4b!, one obtains that
either

A1
25A2

2 ~3.5a!

or

A1A25&. ~3.5b!

Thus we have two subcases. Proceeding with the sub
~3.5a!, which obviously corresponds to the symmetric or a
tisymmetric solitons~2.3! of the NLDC, one obtains from
Eqs.~3.4a! and ~3.4c!

a25 4
3 ~p2m!, A15mA25S 4&3 ~p2m! D 1/2, m561.

~3.6!
nts

s
o

se
-

Next, the subcase~3.5b! corresponds to the asymmetr
soliton of the NLDC. Although, as was mentioned in Sec.
an exact analytical form of this solution is not known, o
can still solve Eqs.~3.4! and thus find its approximate form
To this end, we denote

Z[A1
21A2

2 ~3.7!

and then add Eqs.~3.4a! and ~3.4b! to obtain

a2

2
5Z&22p, ~3.8!

where we have used the relation~3.5b!. Substituting now Eq.
~3.4c! into Eq. ~3.8! and using Eq.~3.5b! again, we find a
quadratic equation forZ:

3
4Z

22p&Z1150. ~3.9!

In order that Eqs.~3.7! and ~3.5b! have a real solution for
A1 andA2 , one must haveZ>2&. This requirement select
one root of Eq.~3.9!, and then we find

A15
1

2 H S 2&3 ~p1Ap22 3
213! D 1/2

1S 2&3 ~p1Ap22 3
223! D 1/2J ,

A25
1

2 H S 2&3 ~p1Ap22 3
213! D 1/2

2S 2&3 ~p1Ap22 3
223! D 1/2J ,

a5S 43 ~2Ap22 3
22p! D 1/2 ~3.10!

~we assumedA1.A2 for definiteness!. Note that this~real!
solution exists forp> 7

4. This threshold value (p0)var5
7
4 is

only 5% larger than the exact bifurcation value (p0)exact
55

3, at which point the asymmetric soliton of Eqs.~2.1!
comes into existence~see Sec. II!.

The other special case of an analytic solution of syst
~3.3! is when one takes

uA1u5uB1u5uA2u5uB2u[A, a5b,

sgn~A1A2!5m, sgn~B1B2!5n,

wherem andn can take on the values61 independently of
each other, and at the same time one relates the contro
rameters by

p2m5q2n.

In this case, Eqs.~3.3! readily yield the solution

A25
4&

3

~p2m!

11b
, a25 4

3 ~p2m!, ~3.11!

which is the variational analogue of the composite vec
soliton ~2.8!.

Although, as was mentioned in Sec. II, a general anal
cal solution to the VNLS~2.4! is not known, it will turn out
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very useful in the future analysis to consider also the red
tion of the DCDP to the VNLS model. To this end, on
should take

A15mA2[A, B15nB2[B, m,n561, ~3.12!

and then Eqs.~3.3! will reduce to

a2

4
1~p2m!2

A2

&
2b

B2a

Aa21b2
50, ~3.13a!

b2

4
1~q2n!2

B2

&
2b

A2b

Aa21b2
50, ~3.13b!

a2

4
2~p2m!1

A2

2&
1b

B2a3

~Aa21b2!3
50, ~3.13c!

b2

4
2~q2n!1

B2

2&
1b

A2b3

~Aa21b2!3
50. ~3.13d!

Equations~3.13! coincide with the equations that the vari
tional method would yield for the VNLS model in whichp
and q would be replaced by (p2m) and (q2n), respec-
tively. These equations, like the exact VNLS model~2.4!,
cannot be solved analytically unlessp2m5q2n, which
yields the special case of the vector soliton with a 45° an
of polarization; cf. Eqs.~3.13!. However, the form of the
general vector soliton (u0 ,v0) of the VNLS has been estab
lished numerically, and so we will consider its variation
approximation, given by Eqs.~3.13!, to be known. Conse
quently, we then know the form of the class of solitons of t
DCDP that satisfies the reduction~3.12!. We will call such
solitons ‘‘core symmetric,’’ and the solitons that do not s
isfy this reduction, ‘‘core asymmetric.’’ These names a
chosen to emphasize a particular kind of symmetry with
spect to interchanging the cores that the corresponding
tons have or do not have. Namely, for the core-symme
solitons, magnitudes of the parallel components in the
cores are the same. Note that the core-symmetric soliton
the DCDP are the analogues of both the symmetric and
tisymmetric solitons of the NLDC, whereas the cor
asymmetric solitons are the analogs of the asymmetric s
tons of the NLDC.

Thus it is the core-asymmetric solitons of Eqs.~3.3! that
will be the remaining subject of our studies. Such solutio
in general, cannot be found analytically, but they can
found numerically by the Newton-Raphson method. Fr
the above, it is also clear that Eqs.~3.3!, in general, may
have more than one solution for any givenp andq. So, in
order to find all the solutions, at least in some specified
gion of A1,2, B1,2, a, and b, we will use the following
procedure. First, we will start to search for solutions wh
any of these six variables lies between the values of
(5Xmin) andA7@max(p,q)11# (5Xmax). These values have
been rather arbitrarily chosen, but as it will be clear fro
what follows, our numerical procedure still allows one
find solutions, if they existed, with values ofA1,2, B1,2, a,
andb outside the interval (Xmin ,Xmax), although such solu-
tions were actually never found.
c-

le

l

e

-

-
li-
ic
o
of
n-
-
li-

,
e

-

e
.1

We divided the interval (Xmin ,Xmax) into smaller subinter-
vals and thus obtained a six-dimensional grid in the spac
the unknownsA1,2, B1,2, a, andb. At each node of the grid
we calculated the sum of the squares of the left-hand side
Eqs. ~3.3!. If that sum was less than a certain number, d
noted here asD, then we took the corresponding node of t
grid as an initial guess in the Newton-Raphson method
then searched for a~real! root near that node. In fact, th
structure of the basins of attraction of the roots of a system
nonlinear algebraic equations can be quite complicated@see,
e.g., @20##, and, in particular, even fractal. So, even a clo
proximity of an initial guess to one of the roots does n
always guarantee convergence to that root. However,
chose the thresholdD to be not too small~usually, we took
D56! and thus obtained many nodes as initial guesses. T
gave us confidence that we have probably not missed an
the actual roots.

From the above exposition of our numerical procedure
is clear that implementing it did require a considerab
amount of computer time. Therefore, any technique for
taining information about the solutions of Eqs.~3.3! by solv-
ing fewer than six algebraic equations should be regarde
a very significant simplification. In Sec. IV, we will describ
in detail two such techniques and also present the results
were obtained by utilizing them.

IV. BOUNDARIES OF REGIONS OF EXISTENCE
OF SOLUTIONS OF EQS. „3.3…

Equations~3.3! have two control parameters,p and q.
Therefore, the first question that needs to be answered
follows: In what region~s! of the (p,q) plane do the solu-
tions exist? We will only consider solutions that have all fo
amplitudes,A1,2 andB1,2 nonzero, since in the case whe
say, B15B250, the solutions were found analytically i
Sec. III. It will be convenient to consider three differe
cases, distinguished by the relative signs of the amplitud
case ~i! A1A2.0 and B1B2.0; case ~ii ! A1A2.0 and
B1B2,0; and case~iii ! A1A2,0 andB1B2,0. Note that
the signs ofA1,2 relative to those ofB1,2 are unimportant.

Let us first find the boundaries of the regions of existen
of the core-symmetric solitons that satisfy the reduct
~3.12!. In that case, the exact equations for the bounda
can be found in the same way as it was done for the VN
~2.4! @16,17#. The result is a simple generalization of E
~2.6!:

~q2n!cr
6 5SA118b21

2 D 62

~p2m!, ~4.1!

wherem andn were defined in Eq.~3.12!. These boundaries
are plotted in Figs. 1 and 2. Note that along the raysq2n
5(q2n)cr

2 and q2n5(q2n)cr
1 , one hasA50 and B50,

respectively.
We now show that the variational method provides a v

good approximation to Eq.~4.1!. In Eqs. ~3.13!, setB50
~but bÞ0!, and thenA anda are given by Eq.~3.6!. Denot-
ing (b/a)5r , one finds from Eqs.~3.13b!, ~3.13d!, and~3.6!

~q2n!cr
1 5

1

3 S 4&br

A11r 2
2r 2D ~p2m!, ~4.2a!
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wherer satisfies

r

2
5

&b

~A11r 2!3
. ~4.2b!

Solving Eqs.~4.2! numerically forb5 2
3 andb52, one finds

F ~q2n!cr
1

p2m G
var

52.426 versusF ~q2n!cr
1

p2m G
exact

52.438

for b52 ~4.3a!

and

F ~q2n!cr
1

p2m G
var

50.573 versusF ~q2n!cr
1

p2m G
exact

50.575

for b5 2
3 . ~4.3b!

Equations for the boundaries of regions of existence
core-asymmetric solitons of the DCDP cannot be found

FIG. 1. Regions of existence of solutions of Eqs.~3.3! with b
5

2
3 in the (p,q) plane.~a! and ~b! correspond to the cases~A1A2

.0, B1B2.0! and ~A1A2.0, B1B2,0!, respectively; a figure for
the case~A1A2,0, B1B2,0! is not shown. Note that in~b!, A1

5A2 and B152B2 along the bisectorp5q only for the core-
symmetric soliton.
f
-

actly, because even the exact form of the asymmetric s
tons of the simpler NLDC model, Eq.~2.1!, is not known.
Therefore, we will use the variational approximation~3.10!
for the asymmetric solitons of the NLDC to find the approx
mate boundaries of the regions of existence of the co
asymmetric solitons of the DCDP. Near such a bounda
one has thatB1,2!A1,2 andA1,2 are given, to the first order
by Eq.~3.10! ~the case whenA1,2!B1,2 can be treated analo

FIG. 2. Same as in Fig. 1, butb52. Note that in~c!, A15
2A2 and B152B2 along the bisectorp5q only for the core-
symmetric and AS2 solitons.
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55 6113SOLITONS IN NONLINEAR FIBER COUPLERS WITH . . .
gously!. Note thatA1 andA2 are of the same sign, while th
infinitesimal amplitudesB1 andB2 could have opposite, a
well as the same signs. Now, in Eqs.~3.3c! and ~3.3d!, one
can neglect the terms proportional toB1

2 and B2
2 but one

should keep the termsB2 /B1 and B1 /B2 , respectively.
Then, requiring that these equations be consistent with e
other, i.e., that the ratio (B2 /B1), found from Eq.~3.3c!, be
the inverse of the ratio (B1 /B2), found from Eq.~3.3d!, one
obtains the equation

S b24 1q2
bbA1

2

Aa21b2
D S b24 1q2

bbA2
2

Aa21b2
D 51,

which, upon using Eqs.~3.5b! and~3.7!, can be rewritten as

S b24 1qD 22S b24 1qD bbZ

Aa21b2
1

2b2b2

a21b2
51. ~4.4!

Next, we substitute the values of (B2 /B1) and (B1 /B2),
found from Eqs.~3.3c! and ~3.3d!, into Eq. ~3.3f! in which
we neglect the terms quadratic inB1,2. This gives

S b4162q2D2
1

2 S b24 2qD bbZ

Aa21b2
1

bb3

2~Aa21b2!3

3FZS b24 1qD2
4bb

Aa21b2
G1150. ~4.5!

Equations~4.4! and ~4.5!, in which b and q are the un-
knowns andZ is the larger root of Eq.~3.9!, determine the
approximate boundaries of existence of the core-asymm
solitons of the DCDP. Equations~4.4! and~4.5! were solved
using the Maple symbolic calculations package, and the
responding results are presented in Figs. 1 and 2~dash-dotted
lines!. Naturally, it is much easier to solve~numerically!
these two equations than the full set of six equations~3.3!.

In reality, finding the boundaries of these regions s
leaves the ambiguity as to on which side of the boundary
solution exists. A rigorous answer to this question requi
carrying out more involved calculations than those presen
above. Here we will only briefly describe the idea and t
results, without going into details.

First, one lets

q5qcr1dq, a5acr1da, b5bcr1db,

A1,25~A1,2!cr1dA1,2

and

da,db,dA1,2,B1
2,B2

25O~dq!,

where the subscriptcr denotes the value of the correspon
ing parameter at one of the boundaries~4.1!. It is now con-
venient to denoteB2 /B15R, with R5O(1). Recall that the
zeroth-order approximationRcr is found from Eqs.~3.3c!
and ~3.3d!, with the terms proportional toB1,2

2 being ne-
glected. When terms of orderdq are retained, thenR5Rcr
1dR, and now Eqs.~3.3c! and ~3.3d! are to be consisten
with one another in the sense thatd(1/R), found from Eq.
~3.3d!, must be equal to (2dR/R2), wheredR is found from
ch

ric

r-

l
e
s
d
e

Eq. ~3.3c!. Upon neglecting terms of orderdq2 and higher,
this compatibility condition gives onelinear equation for the
five unknownsda, db, dA1,2, and B1

2 @since B2
25B1

2Rcr
2

1O(dq2)]. The other four equations for these unknow
follow from Eqs.~3.3a!, ~3.3b!, ~3.3e!, and~3.3f!. By solving
the resulting linear system, one finds thatB1

25K(p)dq,
whereK(p) is some coefficient. Then the requirement th
B1
2.0 selects on which side of the boundary the solut

exists. For example, ifK(p).0, then the real solution exist
for dq.0, and vice versa. The results that we found in t
way are presented in Figs. 1 and 2~the shaded areas deno
the regions where the solutions exist!, and these results ar
confirmed by the numerical solutions of Eqs.~3.3!.

After we have determined the outer boundaries of the
gions of existence of solutions, we determine thebifurcation
curves inside those regions. At any given point of such
curve, a core-asymmetric soliton branches off from the co
symmetric soliton, similarly to what occurs for the NLD
solitons. Let us note that the following analysis can on
determine the location of apitchforkbifurcation, i.e., one for
which the asymmetry between the components of the s
tion vanishes at the bifurcation point and increases gradu
beyond it.

Thus, let us assume that the bifurcation occurs ap
5p0 , q5q0 . Near the bifurcation point, i.e., forp5p0
1dp, q5q01dq, the asymmetry of the solution is small:

A15A01dA1 , A25m~A01dA2!, a5a01da,

B15B01dB1 , B25n~B01dB2!, b5b01db,
~4.6!

whereA0 , B0 , a0 , andb0 are the solutions of Eqs.~3.13!,
with the subindex 0 here and below denoting quantities t
pertain to the bifurcation point. As is well known, at a pitc
fork bifurcation, one has

dA1,2,dB1,2,da,db5O~Adp,Adq!.

Then, substituting Eq.~4.6! into Eq. ~3.3! and retaining only
the terms of order (Adp,Adq), one obtains ahomogeneous
linear system fordA1,2, dB1,2, da, and db. After some
rearrangement, that system separates into two systems:
is for DA[dA12dA2 andDB[dB12dB2 , and the other
for SA[dA11dA2 , SB[dB11dB2 , da, anddb. One can
show ~the details are quite involved and therefore not giv
here! that the determinant of the latter homogeneous sys
is always nonzero forb.0, and thus that system has n
nontrivial solutions. The condition under which a nontrivi
solution ~DAÞ0, DBÞ0! of the former system exists is

S m

A0
22

1

&
D S n

B0
22

1

&
D 5

b2a0b0
a0
21b0

2 . ~4.7!

The existence of such a nontrivial solution is a manifestat
of a pitchfork bifurcation occurring at the point (p0 ,q0),
since forDAÞ0, uA1u is now slightly different fromuA2u.
Thus for the control parametersp andq close to a bifurca-
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tion point, along with the core-symmetric soliton, there
now a soliton with slight asymmetry between its compone
in the two cores, i.e., the core-asymmetric soliton.

To find the location of the bifurcation points, one fir
takes some~arbitrary! relation between (p2m) and (q
2n), say,

~q2n!5g~p2m!, ~4.8!

and then inserts it into Eqs.~4.7! and~3.13!, while consider-
ing (p2m) as an unknown. Before we explain how th
procedure was implemented for generalg in Eq. ~4.8!, let us
observe that analytical solutions of Eqs.~3.13!, ~4.7!, and
~4.8! can be easily found in two particular cases. The fi
case is when, say,B050, and then from Eq.~4.7! one has
A0
25&, which is equivalent to the bifurcation value for th

asymmetric soliton of the NLDC; see Eq.~3.5b!. The corre-
sponding bifurcation points are found in Figs. 1 and 2 at
intersections of the dashed lines and the boundaries
~4.1!. The second special case is when (p02m)5(q02n),
A05B0 , anda05b0 ; thenA0 and a0 are found from Eq.
~3.11!, and Eq.~4.7! yields the following information.

~i! m51, n51 ~A1A2.0, B1B2.0!: for b.1,

A0
25
&

11b
, p05

7
4 ; ~4.9a!

for b,1,

~A0
2!~1!5

&

11b
, p05

7
4 ,

~A0
2!~2!5

&

12b
, p0511

3

4

11b

12b
. ~4.9b!

~ii ! m51, n521, ~A1A2.0, B1B2,0!: for b.1,

no bifurcation point on the rayq115p21; ~4.10a!

for b,1,

A0
25S 2

12b2D 1/2 p0511
3

4 S 11b

12b D 1/2. ~4.10b!

~iii ! m521, n521 ~A1A2,0, B1B2,0!: for b.1,

A0
25
&

b21
, p05211

3

4

11b

b21
; ~4.11a!

for b,1,

no bifurcation point on the rayq115p11.
~4.11b!
s

t

e
q.

These bifurcation points are found in Figs. 1 and 2 at
intersections of the bisector (p2m)5(q2n) with the
dashed lines. The knowledge of the location of the bifur
tion points on the bisector as well as on the boundaries
~4.1!, already gives one a very good idea of what the bif
cation curves will be.

To solve the five equations~4.7! and ~3.13! numerically
when (p2m)Þ(q2n), one proceeds as follows. Equation
~3.13a! and ~3.13b! can be viewed as a linear system f
A2 andB2, and so can Eqs.~3.13c! and ~3.13d!. Then, re-
quiring thatA2, found from Eqs.~3.13a! and~3.13b!, be the
same asA2, found from ~3.13c! and ~3.13d!, and similarly
for B2, one obtains the two equations

S 182
b2a3b3

~a21b2!3D S a2

4&
1

~p2m!

&
2

ba

Aa21b2

3Fb24 1~q2n!G D
5S 122

b2ab

a21b2D
3S ~p2m!

2&
2

a2

8&
2

ba3

~Aa21b2!3
F ~q2n!2

b2

4 G D ,
~4.12a!

S 182
b2a3b3

~a21b2!3D S b2

4&
1

~q2n!

&
2

bb

Aa21b2

3Fa24 1~p2m!G D
5S 122

b2ab

a21b2D S ~q2n!

2&
2

b2

8&
2

bb3

~Aa21b2!3

3F ~p2m!2
a2

4 G D . ~4.12b!

Taking into account Eq.~4.8!, one observes from Eqs.~4.12!
thata2 andb2 are proportional to (p2m). Thus we can take

a5ãAp2m, b5b̃Ap2m, ~4.13!

which definesã and b̃. Then, dividing Eqs.~4.12! through
by (p2m), one obtains two equations forã andb̃, in which
the parameterg, defined in Eq.~4.8!, plays the role of the
control parameter. Solving those equations numerically w
MAPLE, one findsã andb̃ and thenA2 andB2 from, say, Eqs.
~3.13a! and ~3.13b! as
A25
~p2m!

2
S ã 214

&
2

bã

Aã 21b̃ 2
@ b̃ 214g# D Y S 12

2b2ãb̃

ã 21b̃ 2D [KA~g!~p2m!,

B25
~p2m!

2
S b̃ 214g

&
2

bb̃

Aã 21b̃ 2
@ ã 214# D Y S 12

2b2ãb̃

ã 21b̃ 2D [KB~g!~p2m!. ~4.14!
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Substituting Eqs.~4.14! into Eq.~4.7! and solving the result-
ing quadratic equation for (p2m), we obtain the location of
the bifurcation point on the (p,q) plane as a function of the
parameterg. @Note that one should only keep the root~s! that
yield~s! A2.0 and B2.0 according to Eqs.~4.14!.# The

FIG. 3. ~a! Total energy,E5Eu1Ev , of the soliton;~b! ratio of
the energy in theu components to the total energy,Eu /E; ~c! ratios
Eu1 /Eu and Ev1 /Ev versusp for the caseb5

2
3, A1A2.0, and

B1B2.0, (q21)5g(p21), whereg50.9. The solid lines in all
the three figures and the dashed lines in~a! and~b! show the results
for the core-symmetric soliton and the core-asymmetric solito
respectively. In~c!, the dashed line shows (Eu1 /Eu) and the dash-
dotted line shows (Ev1 /Ev) for the core-asymmetric solitons.
results of such calculations are presented in Figs. 1 and
the dashed lines@except for the second bifurcation curve
Fig. 2~c!; see below#.

Let us now explain why solving the equations forã and
b̃ with MAPLE is relatively easy, while solving the full sys
tem ~3.3! with MAPLE would be very difficult.MAPLE’s nu-
merical solver requires an initial guess to be provided
order to find a root of a system of algebraic equations. No

s,

FIG. 4. Same as in Fig. 3, but now (q21)5g(p21) with g
50.85 andA1A2.0, B1B2,0.
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when solving the equations forã and b̃, we know the solu-
tion along the bisector (p2m)5(q2n) and at the bound-
aries~4.1! @see the remark after Eqs.~4.11!#, and hence we
know how many solutions~zero, one, or two! we should
expect. This limits the number of the initial guesses that o
must make. On the contrary, when solving Eqs.~3.3! we do
not knowfor certainhow many solutions there will be. Eve
though the boundaries of the regions of existence and
bifurcation curves give theminimumnumber of solutions
~for givenp andq!, there may exist other bifurcation curve
that correspond to bifurcations other than pitchfork ones
which, therefore, cannot be found by the procedure descr
above. Such a bifurcation curve was indeed found~see Sec.
V!. Thus themaximumnumber of solutions to Eqs.~3.3! and,
consequently, the number of the initial guesses one sh
take, is not known. Thus we found it essential to implem
the scanning procedure described at the end of Sec. III.

V. NUMERICAL SOLUTION OF EQS. „3.3…

In this section, we will present the plots of the regions
existence of various types of the soliton solutions of E
~1.1!, as given by their variational approximations, Eq
~3.3!, and describe what a representative soliton of each t
looks like. In Figs. 1 and 2 we have plotted the regions
existence of the solutions in the (p,q) plane~shaded areas!.
The boundaries of those regions were obtained as expla
in Sec. IV, and in all the cases but one@see Fig. 2~c!#, no
other boundaries were found from the numerical solution
the full system~3.3!. This justifies the effort made on th
analysis that we did in Sec. IV.

The general comments about all the plots in Figs. 1 an
are as follows. First of all, we recall that outside the shad
areas, there exists only solutions with either bothu or both
v components vanishing~cf. Sec. III!. Next, inside the open
angles bounded by the straight lines, there are always
core-symmetric solitons satisfying condition~3.12!. The
asymmetric solitons exist inside the upper right-hand par
the bifurcation curves~dashed lines!, except for the case de
picted in Fig. 2~b!; see below. The dash-dotted lines in the
two figures represent the boundaries where two of the c
ponents~either u1,2 or v1,2! must vanish and the resultin
two-component soliton coincides with the asymmetric so
ton of the NLDC.

In Figs. 3–7, we plotted the dependences of the energ
the soliton’s components, where the energies are define
the formulas

Eu15E
2`

`

uu1u2dt, Eu25E
2`

`

uu2u2dt, Eu5Eu1
1Eu2

,

Ev15E
2`

`

uv1u2dt, Ev25E
2`

`

uv2u2dt, Ev5Ev1
1Ev2

,

~5.1!

versusp @in what follows to be called ‘‘(E2p) diagrams’’#,
with q changing along the rays~4.8! for some representativ
values ofg. ~Note that for any one core-asymmetric solito
there is actually a pair of such solutions, with one membe
the pair differing from the other by interchanging the su
scripts 1 and 2.!
e

e

d
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Now we give specific comments about the plots in Fig
1–7.

In Figs. 1~a! and 3,b5 2
3, A1A2.0, andB1B2.0. For

sufficiently largep and q, one has a second pair of core
asymmetric solitons@labeled ‘‘AS2’’ in Fig. 1~a!#, which are
created as a result of a pitchfork bifurcation from the co
symmetric soliton. Thus the total number of solutio
changes, as one crosses the bifurcation curves from le
right, from 1 to 3 and then to 5. One can see, from Fig.

FIG. 5. Same as in Fig. 4, butb52 andg51.4.
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55 6117SOLITONS IN NONLINEAR FIBER COUPLERS WITH . . .
that for the first core-symmetric soliton@labeled ‘‘AS1’’ in
Fig. 1~a!#,

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~0,0! ~5.2a!

asp,q→`, where (u0 ,v0) is the vector soliton of the VNLS
~2.4! for the givenp and q. ~By convention, we conside

FIG. 6. Same as in Fig. 5, butA1A2,0, B1B2,0, and (q11)
5g(p11) with g51. Note also that in~b!, the solid line between
pointsA andB represents the behavior of both the core-symme
and AS1 solitons, whereas on the right of pointB, it represents the
behavior of the core-symmetric and AS2 solitons.
u0 andv0 to be positive.! The following remarks need to b
made about formula~5.2a! and similar formulas in the re
mainder of this section. It can be shown~see Appendix A!
that the limit~p,q@1, k fixed! taken in Eqs.~1.1! is equiva-
lent to the limit~p,q fixed,k!1!. Therefore, for largep and
q, the solitons in the two cores can be considered as o
weakly coupled to each other. Therefore, in this limit, t
form of the soliton in either core must asymptotically tend
that of one of the possible solutions of the VNLS~2.4!. The

c

FIG. 7. Same as in Fig. 6, butg51.2.
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6118 55T. I. LAKOBA, D. J. KAUP, AND B. A. MALOMED
role of the variational method is that it determines whi
particular configuration of the soliton components is realiz
in each concrete case.

Now, the second core-asymmetric soliton has, in the sa
limit p,q→` and forg,1,

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~u00,0!, ~5.2b!

whereu00 andv00 were defined in Eq.~2.7!. ~For g.1 the
situation is reversed by interchangingu andv.! The form of
the core-symmetric soliton with a given value ofg is the
same as the form of the vector soliton of the VNLS w
(q/p)5g. Equations~5.2!, and their analogs for other case
below, allow one to extrapolate the (E2p) diagrams, found
for a specific value ofg, to other values ofg.

It is worth noting that the first core-asymmetric solito
above is a four-component analog of the asymmetric sol
of the NLDC, since for it

A1

A2
'
B1

B2
. ~5.3!

The asymptotic behavior, expressed by Eq.~5.2b!, of the
AS2 soliton also deserves a separate remark. Indeed,
~5.2b! holds for the caseg,1, whereas forg.1, as noted
above, theu andv components of the soliton must be inte
changed. Thus the asymptotic form of the AS2 soliton
g.1 is

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~0,v00!. ~5.2c!

Comparing Eq.~5.2b! with Eq. ~5.2c!, one sees that there i
a discontinuity in the soliton’s form wheng crosses the value
of 1. Of course, in reality, the solution of Eqs.~3.3! must be
continuous with respect to the control parametersp and q
~and, consequently,g!. The key to resolving this seemin
contradiction lies in keeping the correct order when pass
to the limits (p,q)→` andg→1. We present the details o
the explanation in Appendix B; here we will only note that
all the other five cases considered below, such a situa
does not occur.

In Figs. 1~b! and 4,b5 2
3, A1A2.0, andB1B2,0. For

both g,1 andg.1, the asymptotic~as p,q→`! form of
the core-asymmetric soliton is

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~0,2v00!. ~5.4!

We did not present a separate figure for the caseb5 2
3,

A1A2,0, andB1B2,0 since only the core-symmetric sol
tons exist in this case. The domain of existence of th
solutions is the open angle bounded by the straight li
whose equations are given by Eq.~4.1! with n5m521.

In Fig. 2~a!, b52, A1A2.0, andB1B2.0. We did not
present the (E2p) diagram for the core-asymmetric solito
in this case because it~the diagram! is very similar to that for
the first core-asymmetric soliton in Fig. 3. The only diffe
ence between those two cases is that for the core-asymm
soliton in the present case, the ratio (v2 /v1) tends to zero a
little bit faster than the ratio (u2 /u1) does asp,q→`, while
in Fig. 3, the situation was the opposite. Thus the co
asymmetric soliton in this case is also a four-component a
logue of the asymmetric soliton of the NLDC.
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In Figs. 2~b! and 5,b52, A1A2.0, andB1B2,0. Be-
tween the upper straight line boundary and the dashed c
corresponding to a pitchfork bifurcation, there exists a co
asymmetric soliton with very smallv components. More-
over, a feature that is not seen in this figure, because of
latter’s limited scope, but that can be found from Eqs.~4.7!
and~4.12!–~4.14!, is that the bifurcation curve comes clos
to the straight line boundary asp andq increase, and so fo
p and q large enough, thev components of that core
asymmetric soliton approach zero. For this reason, we ch
not to present a separate (E2p) diagram for that solution.

Next, let us emphasize that the dash-dotted curve, e
though it passes through the interior of the open angle, isnot
a curve of a pitchfork bifurcation occuring from the cor
symmetric soliton. In fact, the core-asymmetric soliton alo
that part of the curve isdistinctly different from the core-
symmetric soliton existing for the same values ofp and q
„except at the point@p5 7

4, q5qcr
1 ( 74)] ….

Note that for bothg,1 andg.1, the asymptotical form
of the core-asymmetric soliton is

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~u00,0!. ~5.5!

In Figs. 2~c!, 6, and 7,b52,A1A2,0, andB1B2,0. The
second bifurcation curve~the one with the cusp! corresponds
to the occurrence oftwo pairs of core-asymmetric soliton
that branch off from the already existing core-asymme
soliton as a result of asaddle-nodebifurcation. This second
bifurcation curve, which could not be found by the metho
described in Sec. IV, was found numerically by solving
six Eqs.~3.3!. The number of solutions in this case chang
as one crosses the bifurcation curves from left to right, fr
1 to 3 and then to 7. We will denote the three different typ
of the core-asymmetric solitons as AS1, AS2, and AS3. T
trends in their (E2p) diagrams are clearly seen from Figs.
and 7, which correspond tog51 andg51.2, respectively.
Note the nonsmooth behavior of the curves correspondin
the AS1 soliton in Fig. 6: such a behavior is characteristic
a degenerate~due tog51! saddle-node bifurcation, which
occurs to that soliton. Note also that the correspond
curves in Fig. 7 become smooth, since the degeneracy o
saddle-node bifurcation is now removed. Forg.1 we have

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~2u00,0! for AS1,
~5.6a!

~u1 ,v1!→~0,v00!, ~u2 ,v2!→~2u00,0! for AS2,
~5.6b!

~u1v1!→~0,v00!, ~u2 ,v2!→~2u0 ,2v0! for AS3
~5.6c!

asp,q→`.

VI. CONCLUSIONS

In this work, we have addressed the problem of the ex
tence of various types of solitons of the DCDP~1.1!. These
equations are a generalization of the NLDC model~2.1! for
the case when polarization of light is taken into accou
Therefore, it was natural to draw analogies with the kno
results for the NLDC and also with the single core with tw
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orthogonal polarizations, described by the VNLS~2.4!.
To find the various types of solitons of the DCDP, w

employed the variational method, in which we approxima
the exact profiles of the solitons by Gaussians. In that w
we found that there are several types of solitons that can
classified as follows: ~i! core-symmetric solitons that ar
the analogs of the symmetric and antisymmetric solitons
the NLDC,~ii ! core-asymmetric solitons that for large valu
of their energy have almost all the energy concentrated
one of the cores, and~iii ! core-asymmetric solitons for whic
the ratio of the energies in the two cores is finite in the lim
of infinite total energy. Group~ii ! includes, forb5 2

3, the
AS1 soliton in Fig. 1~a!, and forb52, it includes the core-
asymmetric soliton in Fig. 2~a! and the core-asymmetric sol
ton with small v components in Fig. 2~b!. Group ~iii ! in-
cludes all the other types of the core-asymmetric solito
All of the core-asymmetric solitons exist only above certa
threshold values of the soliton’s energy. In most cases,
were able to determine the corresponding bifurcation cur
without solving the full system of the variational equation
Eqs.~3.3!. On the contrary, the core-symmetric solitons c
exist for any value of the energy, with equal energy pro
gating in each core.

Let us note the following about the solitons of group~iii !
whose regions of existence are shown in Figs. 1~b! and 2~b!.
Parts of these regions are located below the lineq51. For
21,q,1 andp.1, thelinearizedEqs.~1.1!, in which the
z dependence is replaced by factorseipz andeiqz according
to Eq. ~3.1!, have both exponential and oscillatory solution
It is known that the presence of the latter implies that
stationary solutions of the full, nonlinear Eqs.~1.1! may be
not exponentially localized but instead may have oscillat
‘‘tails’’ with asymptotically constant amplitude. An exampl
of such a situation can be found in@19#. Therefore, it is
possible that the core-asymmetric solitons of Eqs.~1.1! for
21,q,1 also have oscillating tails, even though the var
tional method, being based on the Gaussian ansatz, yie
localized solution in that region. Determining whether or n
this is actually the case would require numerically solvi
the corresponding ordinary differential equation reduction
Eqs.~1.1!, which we do not attempt here. Note that the co
symmetric solitons must be exponentially localized even
21,q,1, because for these, the effective value of
propagation constant of thev component is (q11).0
rather than justq; cf. Eq. ~3.13!.

Now we will briefly comment on the stability of the var
ous types of solitons in the limit of large total energies,E
5Eu1Ev→`. In Sec. V, the variational method allowed u
to determine the exact asymptotic form of the solitons in t
limit. For sufficiently large but still finite values ofE, the
solitons take on their respective forms, Eqs.~5.2!, ~5.4!–
~5.6! plussome small corrections, whose magnitude is of
order 1/E and which, in principle, can be computed. Th
stability results reported below pertain to these, asympt
cally exact, solitons. The details of our stability analysis w
be presented elsewhere@15#. All but one type of solitons in
group ~i!, and all but one type of solitons in group~iii !, are
unstable whenE@1, with the instability growth ratel being
on the order ofO(E)5O(Ap,Aq). Note that in the soliton’s
own reference frame, this instability is weak, since a typi
distance~‘‘soliton period’’! over which the soliton can un
d
y,
be
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dergo significant changes is scaled asp215O(E22). Thus a
sufficiently high-energy~and hence narrow!, unstable soliton
can still propagate several@,O(E)# soliton periods along
the fiber before being significantly changed by the instabil
The exceptional solitons of group~iii !, denoted as AS2 in
Fig. 2~c! have an instability growth rate ofl5O(1), which
is much slower than that of the other unstable solitons. T
such a soliton could exist for many@,O(E2)# soliton peri-
ods, and so it could possibly be observed, as a transient s
in a numerical or a real-world experiment with the DCD
model. Let us note that in@14#, it was reported that certain
unstable solitons~called there ‘‘A-type states’’! could also
propagate in low-birefringence fibers over relatively lo
distances before decaying.

As for the exceptional case of solitons of group~i!, which
is the core-symmetric soliton in Fig. 2~a!, its stability or
instability could not be established within the framework
the first-order calculations carried out in@15#. One could
only state that the instability growth rate, if any, for su
solitons would be on the order of 1at the largest~in the limit
E@1!. In fact, if further studies would reveal thatl
5o(1), then that would mean that this type of circular
polarized, core-symmetric soliton is quasistable~or stable, if
l50! for large energies. This would be in distinct contra
with the NLDC, where the symmetric solitons have an ins
bility growth ratel5O(E) for E@1. We also remark that in
analogy with the results for the NLDC, all types of the cor
symmetric solitons of the DCDP are likely to be stable f
sufficiently low value of their energy.

The two types of solitons of group~ii ! whose regions of
existence in the (Eu ,Ev) plane are shown in Figs. 1~a! and
2~a!, have been proven in@15# to be stable for large values o
their energy. Using the analogy with the asymmetric solit
of the NLDC, we speculate that these two types of solito
of Eqs.~1.1! are also stable over most of the region of th
existence. Let us note that if future studies reveal that
core-symmetric soliton in Fig. 2~a! is either stable or quasis
table, as explained above, then one would have~quasi!bista-
bility between the core-symmetric and core-asymmetric s
tons in the DCDP circular polarizations. For the third type
solitons of group~ii !, the stability analysis in the limitE
@1 is trivial, because in this limit the soliton becomes a
most identical with the two-component asymmetric solit
of the NLDC, and thus it must be stable. Since the solitons
this type have rather smallv components@see Fig. 2~b!# and
hence are close to the two-component asymmetric solit
for any value of their energy, then we speculate that s
solitons must be stable for almost all values of their ener

APPENDIX A: SCALING TRANSFORMATION
FOR EQS. „1.1… AND „3.3…

Here we will show that the limit (p,q)→` in Eqs.~3.3!
is equivalent to the limit of weak coupling of the two core
To this end, we first notice that solitons of Eqs.~3.3! @and
Eqs. ~1.1!# with p,q@1 have large amplitudes and sma
widths, which is seen from the special solutions presente
Secs. II and III and also was confirmed by our numeri
solution of Eqs.~3.3!. Next, one can perform the following
scaling transformation in Eqs.~1.1!:

u5ũ/A«, v5 ṽ/A«, t5 t̃A«, z5 z̃«. ~A1!
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Let the amplitudesũ and ṽ, as well as the soliton’s width
and dispersion length expressed in terms of the rescaled
ordinatest̃ and z̃, respectively, have their magnitudes
order 1. Then taking the limit«!1 in Eq. ~A1! corresponds
to the limitp,q@1 in terms of the original variables.@In fact,
the propagation constants are rescaled as follows:p5 p̃/«
andq5q̃/«, wherep̃,q̃5O(1).# On the other hand, the til
ded quantities satisfy Eqs.~1.1! with k̃5« @recall that we set
k51 in Eqs. ~1.1!#. Thus we have shown that the limit~
p,q@1, k fixed! in Eqs. ~1.1! is equivalent to the limit~
p,q fixed, k!1!, which is the limit of small coupling be-
tween the cores.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE
SECOND CORE-ASYMMETRIC SOLITON IN FIG. 1 „a…

Here we will show how the seeming contradiction, ind
cated in the main text, regarding the asymptotic form of
AS2 soliton in Fig. 1~a! is resolved. First, we notice tha
wheng51, then that soliton has the following symmetry
its components:

u15v2 , u25v1 , u1Þu2 . ~B1!

The existence of this solution was confirmed by explicit n
merical solution of Eqs.~3.3!. Note that whenp5q→`,
u25O(Ap) andu15O(1/Ap). ~For definiteness, we willnot
consider here the equivalent case where the subscripts 1
2 are interchanged.! Thus the asymptotic form of that solito
is (g51)

~u1 ,v1!→~0,v00!, ~u2 ,v2!→~u00,0!. ~B2!

Now, if one fixesp ~or q! to be some large but finite value
while changingg slightly so that (g21) is sufficiently
d
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ev
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s
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e
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nd

small, then the resulting solution, by continuity, must ta
the form

~u1 ,v1!→@„Ô,v00~11Ô!…#, ~u2 ,v2!→@„u00~11Ô!,Ô…#,
~B3!

where the notationÔ is used for a quantity that satisfies

lim
p→`

lim
g→1

Ô50. ~B4!

Note that in Eq.~B4!, the limit g→1 must be taken first. The
asymptotic form~B3! of the soliton in question is differen
from both Eqs.~5.2b! and ~5.2c!. However, if one now first
fixes g at some value not equal to 1 andthenconsiders the
limit of large p ~andq!, then the asymptotic form of the AS
soliton in Fig. 1~a! will indeed be given by either Eqs.~5.2b!
or ~5.2c!. We verified the validity of this statement by nu
merically solving Eqs.~3.3! for g50.97 ~b5 2

3, A1A2.0,
andB1B2.0! and p between 5 and 50~the corresponding
plots are not presented here due to lack of space!. We ob-
served that, for the values of parameters specified in the
vious sentence, the numerical solution agrees reason
well with Eq. ~B1! for p,8, whereas it begins to shift to
wards the asymptotic form Eq.~5.2b! for p.15. For p
'50, the difference between the numerical solution and
corresponding asymptotics Eq.~5.2b! is less than 10%. This
suggests that the quantityÔ above must have the order o
magnitudeO(Ag21)O(1/Ap). Thus we have demonstrate
that there is no contradiction between the continuity of
solution of Eqs.~3.3! with respect to the control parameter
on one hand, and the asymptotic formula~5.2b! @or ~5.2c!#
for the AS2 soliton in Fig. 1~a!, on the other.
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